Learning in Games with Conflicting Interests

Davide Legacci

Université Grenoble Alpes

October 30, 2024 - CJC-MA, Lyon

About

- L, Mertikopoulos, & Pradelski, A Geometric Decomposition of Finite Games: Convergence vs. Recurrence under Exponential Weights, ICML2024
- L, Mertikopoulos, Papadimitriou, Piliouras, & Pradelski, No-regret Learning in Harmonic Games: Extrapolation in the Face of Conflicting Interests, NeurIPS2024

• Game: Strategic interaction among players aiming at maximizing their utility.

- Equilibrium: No player can improve their utility by changing their own strategy.
 - Common interest: There exists an equilibrium all players are interested in reaching.
 - Conflicting interests: Players can't find an agreement. "No matter what you do I want the opposite".
- Learning in games: Do players learn to reach an equilibrium through repeated interaction?
 - ▶ Common interest: Yes! Rational players eventually learn to adopt an equilibrium strategy.
 - Conflicting interests: Not much was known...

Theorem (Informal, Legacci et al., 2024)

Standard learning procedures in continuous time are quasi-periodic in games with conflicting interests.

- Game: Strategic interaction among players aiming at maximizing their utility.
- Equilibrium: No player can improve their utility by changing their own strategy.
 - Common interest: There exists an equilibrium all players are interested in reaching.
 - ► Conflicting interests: Players can't find an agreement. "No matter what you do I want the opposite".
- Learning in games: Do players learn to reach an equilibrium through repeated interaction?
 - Common interest: Yes! Rational players eventually learn to adopt an equilibrium strategy.
 - Conflicting interests: Not much was known...

Theorem (Informal, Legacci et al., 2024)

Standard learning procedures in continuous time are quasi-periodic in games with conflicting interests.

- Game: Strategic interaction among players aiming at maximizing their utility.
- Equilibrium: No player can improve their utility by changing their own strategy.
 - Common interest: There exists an equilibrium all players are interested in reaching.
 - ► Conflicting interests: Players can't find an agreement. "No matter what you do I want the opposite".

• Learning in games: Do players learn to reach an equilibrium through repeated interaction?

- Common interest: Yes! Rational players eventually learn to adopt an equilibrium strategy.
- Conflicting interests: Not much was known...

Theorem (Informal, Legacci et al., 2024)

Standard learning procedures in continuous time are quasi-periodic in games with conflicting interests.

- Game: Strategic interaction among players aiming at maximizing their utility.
- Equilibrium: No player can improve their utility by changing their own strategy.
 - Common interest: There exists an equilibrium all players are interested in reaching.
 - ► Conflicting interests: Players can't find an agreement. "No matter what you do I want the opposite".
- Learning in games: Do players learn to reach an equilibrium through repeated interaction?
 - Common interest: Yes! Rational players eventually learn to adopt an equilibrium strategy.
 - Conflicting interests: Not much was known...

Theorem (Informal, Legacci et al., 2024)

Standard learning procedures in continuous time are quasi-periodic in games with conflicting interests.

- Game: Strategic interaction among players aiming at maximizing their utility.
- Equilibrium: No player can improve their utility by changing their own strategy.
 - Common interest: There exists an equilibrium all players are interested in reaching.
 - ► Conflicting interests: Players can't find an agreement. "No matter what you do I want the opposite".
- Learning in games: Do players learn to reach an equilibrium through repeated interaction?
 - Common interest: Yes! Rational players eventually learn to adopt an equilibrium strategy.
 - Conflicting interests: Not much was known...

Theorem (Informal, Legacci et al., 2024)

Standard learning procedures in continuous time are quasi-periodic in games with conflicting interests.

Question (1.0)

What is the long-run behavior of learning dynamics in games where players have conflicting interests?

1. Games with conflicting interests

2. Learning in games

3. Learning in games with conflicting interests

1. Games with conflicting interests

2. Learning in games

3. Learning in games with conflicting interests

Taxonomy of Games

Copyright P. Mertikopoulos

Taxonomy of Games

Copyright P. Mertikopoulos

Definition

- A finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of
 - A finite set of *players* $\mathcal{N} = \{1, \dots, N\}$
 - A finite set of *actions* $\mathcal{A}_i = \{1, \dots, A_i\}$ per player $i \in \mathcal{N}$
 - An ensemble of *payoff functions* $u_i : A \equiv \prod_{i \in N} A_i \to \mathbb{R}, i \in N$ # Eac

Each player's payoff depends on everybody's actions.

Definition

The **mixed extension** of a finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of

- The set of *mixed strategies* $x_i \in \mathcal{X}_i := \Delta(\mathcal{A}_i)$ per player $i \in \mathcal{N}$, discrete prob. dist. over pure strategies
- The ensemble of *expected payoffs* $u_i : \mathcal{X} \equiv \prod_{i \in \mathcal{N}} \mathcal{X}_i \to \mathbb{R}$ defined by $u_i(x) = \mathbb{E}_{\alpha \sim x}[u_i(\alpha)]$

Definition

The **payoff field** is the array of differentials of the payoff functions wrt. the variables of the respective player:

Definition

A finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of

- A finite set of *players* $\mathcal{N} = \{1, \dots, N\}$
- A finite set of *actions* $\mathcal{A}_i = \{1, \dots, A_i\}$ per player $i \in \mathcal{N}$
- An ensemble of *payoff functions* $u_i : A \equiv \prod_{i \in N} A_i \to \mathbb{R}, i \in N$ # Each p

Each player's payoff depends on everybody's actions.

Definition

The **mixed extension** of a finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of

- The set of *mixed strategies* $x_i \in \mathcal{X}_i := \Delta(\mathcal{A}_i)$ per player $i \in \mathcal{N}$, discrete prob. dist. over pure strategies
- The ensemble of *expected payoffs* $u_i : \mathcal{X} \equiv \prod_{j \in \mathcal{N}} \mathcal{X}_j \to \mathbb{R}$ defined by $u_i(x) = \mathbb{E}_{\alpha \sim x}[u_i(\alpha)]$

Definition

The **payoff field** is the array of differentials of the payoff functions wrt. the variables of the respective player:

Definition

A finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of

- A finite set of *players* $\mathcal{N} = \{1, \dots, N\}$
- A finite set of *actions* $\mathcal{A}_i = \{1, \dots, A_i\}$ per player $i \in \mathcal{N}$
- An ensemble of *payoff functions* $u_i : A \equiv \prod_{i \in \mathcal{N}} A_j \to \mathbb{R}$, $i \in \mathcal{N}$ # Each pla

Each player's payoff depends on everybody's actions.

Definition

The **mixed extension** of a finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of

- The set of *mixed strategies* $x_i \in \mathcal{X}_i := \Delta(\mathcal{A}_i)$ per player $i \in \mathcal{N}$, discrete prob. dist. over pure strategies
- The ensemble of *expected payoffs* $u_i : \mathcal{X} \equiv \prod_{j \in \mathcal{N}} \mathcal{X}_j \to \mathbb{R}$ defined by $u_i(x) = \mathbb{E}_{\alpha \sim x}[u_i(\alpha)]$

Definition

The payoff field is the array of differentials of the payoff functions wrt. the variables of the respective player:

Definition

A finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of

- A finite set of players $\mathcal{N} = \{1, \dots, N\}$
- A finite set of actions $\mathcal{A}_i = \{1, \dots, A_i\}$ per player $i \in \mathcal{N}$
- An ensemble of payoff functions $u_i : \mathcal{A} \equiv \prod_{i \in \mathcal{N}} \mathcal{A}_i \to \mathbb{R}, i \in \mathcal{N}$

Definition

The mixed extension of a finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ consists of

- The set of mixed strategies $x_i \in \mathcal{X}_i := \Delta(\mathcal{A}_i)$ per player $i \in \mathcal{N}$, discrete prob. dist. over pure strategies
- The ensemble of expected payoffs $u_i : \mathcal{X} \equiv \prod_{j \in \mathcal{N}} \mathcal{X}_j \to \mathbb{R}$ defined by $u_i(x) = \mathbb{E}_{\alpha \sim x}[u_i(\alpha)]$

Definition

The payoff field is the array of differentials of the payoff functions wrt. the variables of the respective player:

Definition (Potential games [MS96; San10])

Finite game with **exact** payoff field: $v = d\phi$.

Definition (Potential games [MS96; San10]) Finite game with exact payoff field: $v = d\phi$.

Definition (Potential games [MS96; San10]) Finite game with exact payoff field: $v = d\phi$.

Finite game with **exact** payoff field: $v = d\phi$.

Definition (Harmonic games [Can+11; Abd+22; Leg+24])

Finite game with $m \in \mathbb{R}_{++}^N$, $x^* \in \operatorname{rint} \mathcal{X}$ such that $\langle v(x), x - x^* \rangle_m = 0$ for all $x \in \mathcal{X}$.

Davide Legacci (Université Grenoble Alpes)

Framework: combinatorial Hodge theory.

- Two players: an army and a fortress. The army can Attack or Not; the fortress can Defend or Not.
- Tacking an action (A or D) implies a **preparation cost**.
- The army prevails attacking the undefended fortress; however, if the fortress is defended, the assault fails.

- Two players: an army and a fortress. The army can Attack or Not; the fortress can Defend or Not.
- Tacking an action (A or D) implies a preparation cost.
- The army prevails attacking the undefended fortress; however, if the fortress is defended, the assault fails.

$$\begin{array}{c|ccccc}
D & N \\
\hline
A & -3, 1 & 2, -4 \\
N & 0, -1 & 0, 0
\end{array}$$

- Two players: an army and a fortress. The army can Attack or Not; the fortress can Defend or Not.
- Tacking an action (A or D) implies a preparation cost.
- The army prevails attacking the undefended fortress; however, if the fortress is defended, the assault fails.
- Not a zero-sum game!

• Two players: an army and a fortress. The army can Attack or Not; the fortress can Defend or Not.

- Tacking an action (A or D) implies a preparation cost.
- The army prevails attacking the undefended fortress; however, if the fortress is defended, the assault fails.
- Not a zero-sum game!

Harmonic game: $\sum_{i \in \mathcal{N}} m_i \langle v_i(x), x_i - x_i^* \rangle = 0$ for all $x \in \mathcal{X}$ with m = (6, 5) and $x^* = ((\frac{1}{6}, \frac{5}{6}), (\frac{2}{5}, \frac{3}{5}))$.

- Two players: an army and a fortress. The army can Attack or Not; the fortress can Defend or Not.
- Tacking an action (A or D) implies a preparation cost.
- The army prevails attacking the undefended fortress; however, if the fortress is defended, the assault fails.
- Not a zero-sum game!

$$\begin{array}{c|ccccc}
D & N \\
\hline
A & -3, 1 & 2, -4 \\
N & 0, -1 & 0, 0
\end{array}$$

Harmonic game: $\sum_{i \in \mathcal{N}} m_i \langle v_i(x), x_i - x_i^* \rangle = 0$ for all $x \in \mathcal{X}$ with m = (6, 5) and $x^* = ((\frac{1}{6}, \frac{5}{6}), (\frac{2}{5}, \frac{3}{5}))$.

Example (Other harmonic games)

- Matching Pennies, Rock-Paper-Scissors
- All two-player zero-sum games with an interior equilibrium
- Cyclic games

Legacci et al. (2024)

Hofbauer and Schlag (2000)

- Two players: an army and a fortress. The army can Attack or Not; the fortress can Defend or Not.
- Tacking an action (A or D) implies a preparation cost.
- The army prevails attacking the undefended fortress; however, if the fortress is defended, the assault fails.
- Not a zero-sum game!

Harmonic game: $\sum_{i \in \mathcal{N}} m_i \langle v_i(x), x_i - x_i^* \rangle = 0$ for all $x \in \mathcal{X}$ with m = (6, 5) and $x^* = ((\frac{1}{6}, \frac{5}{6}), (\frac{2}{5}, \frac{3}{5}))$.

Theorem (Decomposition [Can+11; Abd+22])

The vector space of finite games U modulo strategic equivalence admits the orthogonal direct sum decomposition

$$\mathcal{U} = \mathcal{U}_{potential} \oplus \mathcal{U}_{harmonic}$$

Why we care about harmonic games

- Natural complement to potential games from a strategic viewpoint
- Benchmark for strategic interaction with conflicting interests, generalizing zero-sum games to N-player setting

How does the "circular" payoff structure of games in which players have conflicting interests affect learning?

Question (2.0)

What is the long-run behavior of learning dynamics in harmonic games?

- Natural complement to potential games from a strategic viewpoint
- Benchmark for strategic interaction with conflicting interests, generalizing zero-sum games to N-player setting

How does the "circular" payoff structure of games in which players have conflicting interests affect learning?

Question (2.0)

What is the long-run behavior of learning dynamics in harmonic games?

- 1. Games with conflicting interests
- 2. Learning in games
- 3. Learning in games with conflicting interests

Do players learn to emulate rational behaviour through repeated interactions?

Multi-objective optimization

- each agent aims at maximizing their payoff
- each agent's payoff depends on everybody's actions

Multi-agent learning;

```
for each epoch and every player ;
```

do

```
Choose action ;
Receive reward ;
Get feedback (maybe) ;
```

Defining elements

- Time: continuous or discrete?
- Players: continuous or finite?
- Actions: continuous or finite? constrained or unconstrained?
- Rewards: endogenous or exogenous (determined by other players or by "Nature")?
- Feedback: full information, incomplete (bandit) information? Stochastic noise?

Multi-agent learning

Learning in finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$;

for each $t \geq 0$ and every player $i \in \mathcal{N}$;

do simultaneously

Choose *mixed strategy* $x_i(t) \in \mathcal{X}_i = \Delta(\mathcal{A}_i)$; Receive *mixed payoff* $u_i(x(t)) \in \mathbb{R}$; Get *payoff vector* $v_i(x(t)) = d_i u_i(x(t)) \in \mathbb{R}^{A_i}$;

Defining elements

- Time: continuous
- Players: finite
- Actions: continuous, constrained
- **Rewards:** endogenous
- Feedback: full information

Multi-agent learning

Learning in finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$;

for each $t \geq 0$ and every player $i \in \mathcal{N}$;

do simultaneously

Choose *mixed strategy* $x_i(t) \in \mathcal{X}_i = \Delta(\mathcal{A}_i)$; Receive *mixed payoff* $u_i(x(t)) \in \mathbb{R}$; Get *payoff vector* $v_i(x(t)) = d_i u_i(x(t)) \in \mathbb{R}^{A_i}$;

Defining elements

- Time: continuous
- Players: finite
- Actions: continuous, constrained
- **Rewards:** endogenous
- Feedback: full information

Key: choice of next strategy given previous payoff vector.

Key: choice of next strategy given previous payoff vector.

- Score each action α_i based on its cumulative effect on payoff over time
- Play an action with probability given by soft argmax

Follow-the-regularized-leader (FTRL)

Shalev-shwartz and Singer (2006)

$$\dot{y}_i(t) = v_i(x(t)), \qquad x_i(t) =
abla h_i^*(y_i(t)) = \arg\max_{z_i \in \mathcal{X}_i} \{\langle y_i(t), z_i \rangle - h_i(z_i)\}$$

where $h_i : \mathcal{X}_i \to \mathbb{R}$ is strongly convex regularizer.

Key: choice of next strategy given previous payoff vector.

- Score each action α_i based on its cumulative effect on payoff over time
- Play an action with probability given by soft argmax

Follow-the-regularized-leader (FTRL)

Shalev-shwartz and Singer (2006)

$$\dot{y}_i(t) = \mathsf{v}_i(x(t)), \qquad x_i(t) =
abla h_i^*(y_i(t)) = rg\max_{z_i \in \mathcal{X}_i} \{\langle y_i(t), z_i
angle - h_i(z_i)\}$$

where $h_i : \mathcal{X}_i \to \mathbb{R}$ is strongly convex regularizer.

Hessian-Riemannian individual gradient ascent

Mertikopoulos and Sandholm (2018)

 $\dot{x}_i = v_i^{\sharp}(x) = \operatorname{grad}_i u_i(x)$ with respect to Hessian metric $g = \operatorname{Hess} h$ on rint \mathcal{X}

~ Every player follows direction of maximal payoff increase

Regularizer of Legendre type

Euclidean regularizer
$$h = \frac{1}{2} \|x\|_2^2 \implies x_i(t) = \arg\min_{z_i \in \mathcal{X}_i} \|y_i(t) - z_i\|_2^2$$

Davide Legacci (Université Grenoble Alpes)

Follow-the-regularized-leader (FTRL)

Shalev-shwartz and Singer (2006)

$$\dot{y}_i(t) = v_i(x(t)), \qquad x_i(t) =
abla h_i^*(y_i(t)) = rg\max_{z_i \in \mathcal{X}_i} \{\langle y_i(t), z_i
angle - h_i(z_i) \}$$

where $h_i : \mathcal{X}_i \to \mathbb{R}$ is strongly convex regularizer.

Hessian-Riemannian individual gradient ascent

Mertikopoulos and Sandholm (2018)

 $\dot{x}_i = v_i^{\sharp}(x) = \operatorname{grad}_i u_i(x)$ with respect to Hessian metric $g = \operatorname{Hess} h$ on rint \mathcal{X}

~ Every player follows direction of maximal payoff increase

Regularizer of Legendre type

Example (Canonical: Exponential weights – Replicator dynamics [Aue+95; TJ78; LW94])

Entropic regularizer
$$h = x \cdot \log x \implies x_{i\alpha_i}(t) = \frac{\exp y_{i\alpha_i}}{\sum_{\beta_i} \exp y_{i\beta_i}} \implies \dot{x}_{i\alpha_i} = x_{i\alpha_i} \left[u_i(\alpha_i, x_{-i}) - u_i(x) \right]$$

- 1. Games with conflicting interests
- 2. Learning in games
- 3. Learning in games with conflicting interests

Learning in harmonic games - How do the trajectories look like?

Learning in harmonic games - How do the trajectories look like?

Learning in harmonic games – How do the trajectories look like?

Learning in harmonic games - How do the trajectories look like?

FTRL is globally converging in **potential** games [GP20; HCM17].

Question (3.0)

What is the long-run behavior of FTRL in harmonic games?

Definition (Poincaré recurrent dynamical system)

Almost all trajectories return arbitrarily close to their starting point infinitely often.

Formalize "quasi-periodicity".

Theorem (Legacci et al. (2024))

The dynamics of FTRL are Poincaré recurrent in any harmonic game.

- Generalize [MPP18] for 2-player zero-sum games with interior equilibrium to *N-player games* **Proof techniques**
- Entropic regularizer: Replicator dynamics in harmonic games are *volume preserving* under a certain Riemannian metric
- General FTRL: Existence of constant of motion allows to bound orbits
- $\bullet\,$ In both cases \rightsquigarrow Recurrence by Liouville's and Poincaré's theorems

Definition (Poincaré recurrent dynamical system)

Almost all trajectories return arbitrarily close to their starting point infinitely often.

Formalize "quasi-periodicity".

Theorem (Legacci et al. (2024))

The dynamics of FTRL are Poincaré recurrent in any harmonic game.

- Generalize [MPP18] for 2-player zero-sum games with interior equilibrium to *N-player games* **Proof techniques**
- **Entropic regularizer:** Replicator dynamics in harmonic games are *volume preserving* under a certain Riemannian metric
- General FTRL: Existence of constant of motion allows to bound orbits
- $\bullet\,$ In both cases \rightsquigarrow Recurrence by Liouville's and Poincaré's theorems

Definition (Poincaré recurrent dynamical system)

Almost all trajectories return arbitrarily close to their starting point infinitely often.

Formalize "quasi-periodicity".

Theorem (Legacci et al. (2024))

The dynamics of FTRL are Poincaré recurrent in any harmonic game.

• Generalize [MPP18] for 2-player zero-sum games with interior equilibrium to N-player games

Proof techniques

- Entropic regularizer: Replicator dynamics in harmonic games are *volume preserving* under a certain Riemannian metric
- General FTRL: Existence of constant of motion allows to bound orbits
- \bullet In both cases \rightsquigarrow Recurrence by Liouville's and Poincaré's theorems

Definition (Poincaré recurrent dynamical system)

Almost all trajectories return arbitrarily close to their starting point infinitely often.

Formalize "quasi-periodicity".

Theorem (Legacci et al. (2024))

The dynamics of FTRL are Poincaré recurrent in any harmonic game.

• Generalize [MPP18] for 2-player zero-sum games with interior equilibrium to N-player games

Proof techniques

- Entropic regularizer: Replicator dynamics in harmonic games are *volume preserving* under a certain Riemannian metric
- General FTRL: Existence of constant of motion allows to bound orbits
- $\bullet\,$ In both cases \rightsquigarrow Recurrence by Liouville's and Poincaré's theorems

Conclusions

Take-away

Harmonic games complement potential games from strategic and dynamic viewpoints

From here: Learning in discrete time

- Convergence & good regret guarantees via optimistic/extra-gradient methods
- Rates of convergence, incomplete/noisy feedback, adaptive step size

From here: Learning in continuous time

- Harmonic games with continuous action sets
- Stochastic FTRL/RD in harmonic games

Legacci et al. (2024)

work in progress

work in progress

open direction

Conclusions

Take-away

Harmonic games complement potential games from strategic and dynamic viewpoints

From here: Learning in discrete time

- **Convergence & good regret guarantees** via optimistic/extra-gradient methods Legacci et al. (2024) # work in progress
- Rates of convergence, incomplete/noisy feedback, adaptive step size

- Harmonic games with continuous action sets
- Stochastic FTRL/RD in harmonic games

Conclusions

Take-away

Harmonic games complement potential games from strategic and dynamic viewpoints

From here: Learning in discrete time

 Convergence & good regret guarantees via optimistic/extra-gradient methods 	Legacci et al. (2024)
• Rates of convergence, incomplete/noisy feedback, adaptive step size	# work in progress
rom horou Learning in continuous time	

From here: Learning in continuous time

٥	Harmonic games with continuous action sets	# work in progress
•	Stochastic FTRL/RD in harmonic games	# open direction

Thanks for your attention!

A glimpse: Harmonic games and Hodge theory

- Combinatorial Hodge theory of finite game Γ
- Γ potential iff $\Gamma = d_0 \phi \rightsquigarrow exact$
- Γ harmonic iff $\delta_1 \Gamma = 0 \rightsquigarrow co-closed$

Theorem (Decomposition [Can+11; Abd+22])

 $\Gamma = \Gamma_{potential} + \Gamma_{harmonic}$

- **Riemannian** setting on rint \mathcal{X} ; payoff field v of game Γ is 1-form
- Γ potential iff $v = d\phi$
- Riemannian codifferential δ_g : 1-forms (rint \mathcal{X}) \rightarrow smooth functions (rint \mathcal{X})
- Codifferential: adjoint of differential; dual of divergence.

Theorem (Legacci, Mertikopoulos, and Pradelski (2024))

A finite game Γ is harmonic iff $\delta_{g^*} v = 0$, with respect to certain weights m and a certain metric g^* on rint \mathcal{X} .

Proof sketch - Recurrence of FTRL in harmonic games

Tools: Dynamical systems theory

 $\dot{x} = f(x), \quad f \text{ vector field } : M \text{ open } \subseteq \mathbb{R}^n \to \mathbb{R}$

• Liouville's theorem

div $f = 0 \implies$ volum-preserving system

• Poincaré's theorem

 $\begin{cases} \text{volum-preserving system} \\ \text{bounded orbits} \end{cases} \implies \text{recurrent system} \end{cases}$

Replicator dynamics as Riemannian individual payoff gradient

Recall: payoff field is individual payoff Euclidean gradient

 $v_i(x) = \operatorname{grad}_i u_i(x)$

Replicator field is individual payoff gradient under non-Euclidean geometry g^* : [Sha79]

$$RD_i(x) = \operatorname{grad}_i^{g^*} u_i(x)$$

Define divergence operator with respect to geometry g^*

Equivalence between harmonic and divergence-free games

Theorem ([LMP24])

A finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ is harmonic with uniform measure $\mu_{i\alpha_i} = 1$ if and only if its associated replicator vector field $\operatorname{grad}_{i}^{g^*} u_i(x)$ has zero divergence under the geometry g^* .

- By Liouville's theorem, RD on harmonic games is volume-preserving in strategy space;
- RD has only bounded orbits in all games;
- Recurrence follows by Poincaré's theorem.

Riemannian approach: Pros and cons

Pros

- Surprising connection between Riemannian construction and uniform harmonic games
- Fine understanding of dynamics-geometry interplay in strategy space
- For general FTRL adapt standard method [MPP18]
- ightarrow relatively easy result, but lose geometrical interpretation of what happens in strategy space

Cons

- Harmonic / divergence-free equivalence fails changing metric
- Need to change approach for general FTRL case.

FTRL in harmonic games admits a constant of motion

Proposition ([Leg+24])

Let $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ be a finite game and consider a vector $m \in \mathbb{R}_{++}^N$ and a fully mixed strategy $q \in \mathcal{X}$. Then the function defined by

$$F_{m,q}(y) := \sum_{i} m_i \left[h_i(q_i) + h_i^*(y_i) - \langle q_i, y_i \rangle \right]$$

is a constant of motion under FTRL if and only if Γ is harmonic with strategic center (m, q).

FTRL is divergence-free in all games in payoff space

$$\begin{cases} \dot{y_i} = v_i(x) \\ x_i = Q_i(y_i) \end{cases} \implies \dot{y_i} = v_i(Q(y))$$
(FTRL)

$$rac{d\dot{y}_{ilpha_i}}{dy_{jeta_j}}\equiv 0$$
 by multilinearitity of the payoff functions

• By Liouville's theorem, FTRL in payoff space is volume-preserving in all games ;

.

- the constant of motion can be used to show that FTRL in harmonic games has only bounded orbits;
- Recurrence follows by Poincaré's theorem.

Bibliography

- [Abd+22] Abdou, Joseph et al. "Decomposition of Games: Some Strategic Considerations". In: Mathematics of Operations Research 47.1 (Feb. 2022), pp. 176–208.
- [Aue+95] Auer, P. et al. "Gambling in a Rigged Casino: The Adversarial Multi-Armed Bandit Problem". In: Proceedings of IEEE 36th Annual Foundations of Computer Science. Oct. 1995, pp. 322–331.
- [Can+11] Candogan, Ozan et al. "Flows and Decompositions of Games: Harmonic and Potential Games". In: Mathematics of Operations Research 36.3 (Aug. 2011), pp. 474–503.
- [Fri91] Friedman, Daniel. "Evolutionary Games in Economics". In: Econometrica 59.3 (1991), pp. 637–666. JSTOR: 2938222.
- [GP20] Gao, Bolin and Pavel, Lacra. "On the Rate of Convergence of Continuous-Time Game Dynamics in N-Player Potential Games". In: 2020 59th IEEE Conference on Decision and Control (CDC). Dec. 2020, pp. 1678–1683.
- [HCM17] Heliou, Amélie, Cohen, Johanne, and Mertikopoulos, Panayotis. "Learning with Bandit Feedback in Potential Games". In: Advances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc., 2017.
- [HS00] Hofbauer, Josef and Schlag, Karl H. "Sophisticated Imitation in Cyclic Games". In: Journal of Evolutionary Economics 10.5 (Sept. 2000), pp. 523–543.
- [Leg+24] Legacci, Davide et al. "No-Regret Learning in Harmonic Games: Extrapolation in the Face of Conflicting Interests". In: In proceeding, May 2024.
- [LMP24] Legacci, Davide, Mertikopoulos, Panayotis, and Pradelski, Bary. "A Geometric Decomposition of Finite Games: Convergence vs. Recurrence under Exponential Weights". In: Forty-First International Conference on Machine Learning: June 2024.
- [LW94] Littlestone, N. and Warmuth, M. K. "The Weighted Majority Algorithm". In: Information and Computation 108.2 (Feb. 1994), pp. 212–261.
- [MPP18] Mertikopoulos, Panayotis, Papadimitriou, Christos, and Piliouras, Georgios. "Cycles in Adversarial Regularized Learning". In: Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Proceedings. Society for Industrial and Applied Mathematics, Jan. 2018, pp. 2703–2717.
- [MS18] Mertikopoulos, Panayotis and Sandholm, William H. "Riemannian Game Dynamics". In: Journal of Economic Theory 177 (2018), pp. 315–364.
- [MS96] Monderer, Dov and Shapley, Lloyd S. "Potential Games". In: Games and Economic Behavior 14.1 (May 1996), pp. 124–143.
- [San10] Sandholm, William H. Population Games and Evolutionary Dynamics. MIT press, 2010.
- [Sha79] Shahshahani, Siavash. A New Mathematical Framework for the Study of Linkage and Selection. American Mathematical Soc., 1979.
- [SS06] Shalev-shwartz, Shai and Singer, Yoram. "Convex Repeated Games and Fenchel Duality". In: Advances in Neural Information Processing Systems. Vol. 19. MIT Press, 2006.
- [TJ78] Taylor, Peter D and Jonker, Leo B. "Evolutionary Stable Strategies and Game Dynamics". In: Mathematical biosciences 40.1-2 (1978), pp. 145–156.