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This talk explained to my dad

Game: Strategic interaction among players aiming at maximizing their utility.

Equilibrium: No player can improve their utility by changing their own strategy.

▶ Common interest: There exists an equilibrium all players are interested in reaching.

▶ Conflicting interests: Players can’t find an agreement. “No matter what you do – I want the opposite”.

Learning in games: Do players learn to reach an equilibrium through repeated interaction?

▶ Common interest: Yes! Rational players eventually learn to adopt an equilibrium strategy.

▶ Conflicting interests: Not much was known...

Theorem (Informal, Legacci et al., 2024)

Standard learning procedures in continuous time are quasi-periodic in games with conflicting interests.
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Question (1.0)

What is the long-run behavior of learning dynamics in games where players have conflicting interests?

1. Games with conflicting interests

2. Learning in games

3. Learning in games with conflicting interests
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Taxonomy of Games

Copyright P. Mertikopoulos
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Finite Games and their Mixed Extension

Definition

A finite game Γ = Γ(N ,A, u) consists of

A finite set of players N = {1, . . . ,N}

A finite set of actions Ai = {1, . . . ,Ai} per player i ∈ N

An ensemble of payoff functions ui : A ≡
∏

j∈N Aj → R, i ∈ N # Each player’s payoff depends on everybody’s actions.

Definition

The mixed extension of a finite game Γ = Γ(N ,A, u) consists of

The set of mixed strategies xi ∈ Xi := ∆(Ai ) per player i ∈ N , discrete prob. dist. over pure strategies

The ensemble of expected payoffs ui : X ≡
∏

j∈N Xj → R defined by ui (x) = Eα∼x [ui (α)]

Definition
The payoff field is the array of differentials of the payoff functions wrt. the variables of the respective player :

vi (x) = diui (x) for all i ∈ N , x ∈ X ⇝ 1-form, generically not exact
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Games with Common & Conflicting Interests

Definition (Potential games [MS96; San10] )

Finite game with exact payoff field: v = dϕ.
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(A,N) : u = (2, -4) (N,N) : u = (0, 0)

(A,D) : u = (-3, 1) (N,D) : u = (0, -1)

Definition (Harmonic games [Can+11; Abd+22; Leg+24] )

Finite game with m ∈ RN
++, x

∗ ∈ rintX such that ⟨v(x), x − x∗⟩m = 0 for all x ∈ X .
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Harmonic games to model conflicting interests

Framework: combinatorial Hodge theory.

Two players: an army and a fortress. The army can Attack or Not; the fortress can Defend or Not.

Tacking an action (A or D) implies a preparation cost.

The army prevails attacking the undefended fortress; however, if the fortress is defended, the assault fails.
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Harmonic game:
∑

i∈N mi ⟨vi (x), xi − x∗i ⟩ = 0 for all x ∈ X with m = (6, 5) and x∗ =
(
( 16 ,

5
6 ), (

2
5 ,

3
5 )
)
.
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i∈N mi ⟨vi (x), xi − x∗i ⟩ = 0 for all x ∈ X with m = (6, 5) and x∗ =
(
( 16 ,

5
6 ), (

2
5 ,

3
5 )
)
.

Example (Other harmonic games)

Matching Pennies, Rock-Paper-Scissors

All two-player zero-sum games with an interior equilibrium Legacci et al. (2024)

Cyclic games Hofbauer and Schlag (2000)
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i∈N mi ⟨vi (x), xi − x∗i ⟩ = 0 for all x ∈ X with m = (6, 5) and x∗ =
(
( 16 ,

5
6 ), (

2
5 ,

3
5 )
)
.

Theorem (Decomposition [Can+11; Abd+22] )

The vector space of finite games U modulo strategic equivalence admits the orthogonal direct sum decomposition

U = Upotential ⊕ Uharmonic
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Why we care about harmonic games

Natural complement to potential games from a strategic viewpoint

Benchmark for strategic interaction with conflicting interests, generalizing zero-sum games to N-player setting

How does the “circular” payoff structure of games in which players have conflicting interests affect learning?

Question (2.0)

What is the long-run behavior of learning dynamics in harmonic games?
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1. Games with conflicting interests

2. Learning in games

3. Learning in games with conflicting interests
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Multi-agent learning

Do players learn to emulate rational behaviour through repeated interactions?

Multi-objective optimization

each agent aims at maximizing their payoff

each agent’s payoff depends on everybody’s actions
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Multi-agent learning

Multi-agent learning;

for each epoch and every player ;

do

Choose action ;

Receive reward ;

Get feedback (maybe) ;

Defining elements

Time: continuous or discrete?

Players: continuous or finite?

Actions: continuous or finite? constrained or unconstrained?

Rewards: endogenous or exogenous (determined by other players or by “Nature”)?

Feedback: full information, incomplete (bandit) information? Stochastic noise?
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Multi-agent learning

Learning in finite game Γ = Γ(N ,A, u);

for each t ≥ 0 and every player i ∈ N ;

do simultaneously

Choose mixed strategy xi (t) ∈ Xi = ∆(Ai ) ;

Receive mixed payoff ui (x(t)) ∈ R ;

Get payoff vector vi (x(t)) = diui (x(t)) ∈ RAi ;

Defining elements

Time: continuous

Players: finite

Actions: continuous, constrained

Rewards: endogenous

Feedback: full information
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for each t ≥ 0 and every player i ∈ N ;

do simultaneously

Choose mixed strategy xi (t) ∈ Xi = ∆(Ai ) ;

Receive mixed payoff ui (x(t)) ∈ R ;

Get payoff vector vi (x(t)) = diui (x(t)) ∈ RAi ;

Defining elements

Time: continuous

Players: finite

Actions: continuous, constrained

Rewards: endogenous

Feedback: full information

Key: choice of next strategy given previous payoff vector.
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Regularized learning & Hessian-Riemannian interpretation

Key: choice of next strategy given previous payoff vector.

Score each action αi based on its cumulative effect on payoff over time

Play an action with probability given by soft argmax

Follow-the-regularized-leader (FTRL) Shalev-shwartz and Singer (2006)

ẏi (t) = vi (x(t)), xi (t) = ∇h∗i (yi (t)) = arg max
zi∈Xi

{⟨yi (t), zi ⟩ − hi (zi )}

where hi : Xi → R is strongly convex regularizer.
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Follow-the-regularized-leader (FTRL) Shalev-shwartz and Singer (2006)

ẏi (t) = vi (x(t)), xi (t) = ∇h∗i (yi (t)) = arg max
zi∈Xi

{⟨yi (t), zi ⟩ − hi (zi )}

where hi : Xi → R is strongly convex regularizer.

Hessian-Riemannian individual gradient ascent Mertikopoulos and Sandholm (2018)

ẋi = vi
♯(x) = gradi ui (x) with respect to Hessian metric g = Hess h on rintX

⇝ Every player follows direction of maximal payoff increase # Regularizer of Legendre type

Example (Canonical: Euclidean projection dynamics [Fri91] )

Euclidean regularizer h =
1

2
∥x∥22 =⇒ xi (t) = arg min

zi∈Xi

∥yi (t)− zi∥22
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ẋi = vi
♯(x) = gradi ui (x) with respect to Hessian metric g = Hess h on rintX

⇝ Every player follows direction of maximal payoff increase # Regularizer of Legendre type

Example (Canonical: Exponential weights – Replicator dynamics [Aue+95; TJ78; LW94] )

Entropic regularizer h = x · log x =⇒ xiαi (t) =
exp yiαi∑
βi
exp yiβi

=⇒ ẋiαi = xiαi [ui (αi , x−i )− ui (x)]
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Learning in harmonic games – How do the trajectories look like?
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FTRL is globally converging in potential games [GP20; HCM17].

Question (3.0)

What is the long-run behavior of FTRL in harmonic games?
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Learning in harmonic games – Main result

Definition (Poincaré recurrent dynamical system)

Almost all trajectories return arbitrarily close to their starting point infinitely often. # Formalize “quasi-periodicity”.

Theorem (Legacci et al. (2024))

The dynamics of FTRL are Poincaré recurrent in any harmonic game.

Generalize [MPP18] for 2-player zero-sum games with interior equilibrium to N-player games

Proof techniques

Entropic regularizer: Replicator dynamics in harmonic games are volume preserving under a certain

Riemannian metric

General FTRL: Existence of constant of motion allows to bound orbits

In both cases ⇝ Recurrence by Liouville’s and Poincaré’s theorems
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Theorem (Legacci et al. (2024))

The dynamics of FTRL are Poincaré recurrent in any harmonic game.

Generalize [MPP18] for 2-player zero-sum games with interior equilibrium to N-player games

Proof techniques

Entropic regularizer: Replicator dynamics in harmonic games are volume preserving under a certain

Riemannian metric

General FTRL: Existence of constant of motion allows to bound orbits

In both cases ⇝ Recurrence by Liouville’s and Poincaré’s theorems
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The dynamics of FTRL are Poincaré recurrent in any harmonic game.

Generalize [MPP18] for 2-player zero-sum games with interior equilibrium to N-player games

Proof techniques

Entropic regularizer: Replicator dynamics in harmonic games are volume preserving under a certain

Riemannian metric

General FTRL: Existence of constant of motion allows to bound orbits

In both cases ⇝ Recurrence by Liouville’s and Poincaré’s theorems
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Conclusions

Take-away

Harmonic games complement potential games from strategic and dynamic viewpoints

From here: Learning in discrete time

Convergence & good regret guarantees via optimistic/extra-gradient methods Legacci et al. (2024)

Rates of convergence, incomplete/noisy feedback, adaptive step size # work in progress

From here: Learning in continuous time

Harmonic games with continuous action sets # work in progress

Stochastic FTRL/RD in harmonic games # open direction
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Thanks for your attention!
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A glimpse: Harmonic games and Hodge theory

Combinatorial Hodge theory of finite game Γ

Γ potential iff Γ = d0ϕ⇝ exact

Γ harmonic iff δ1Γ = 0⇝ co-closed

Theorem (Decomposition [Can+11; Abd+22])

Γ = Γpotential + Γharmonic

C0 Γ ∈ C1 C2

d0

∆1

d1

δ1 δ2

Riemannian setting on rintX ; payoff field v of game Γ is 1-form

Γ potential iff v = dϕ

Riemannian codifferential δg : 1-forms (rintX ) → smooth functions (rintX )

Codifferential: adjoint of differential; dual of divergence.

Theorem (Legacci, Mertikopoulos, and Pradelski (2024))

A finite game Γ is harmonic iff δg∗v = 0, with respect to certain weights m and a certain metric g∗ on rintX .
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Proof sketch - Recurrence of FTRL in harmonic games

Tools: Dynamical systems theory

ẋ = f (x), f vector field : M open ⊆ Rn → R

Liouville’s theorem

div f = 0 =⇒ volum-preserving system

Poincaré’s theorem volum-preserving system

bounded orbits
=⇒ recurrent system
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Replicator dynamics as Riemannian individual payoff gradient

Recall: payoff field is individual payoff Euclidean gradient

vi (x) = gradi ui (x)

Replicator field is individual payoff gradient under non-Euclidean geometry g∗: [Sha79]

RDi (x) = gradg
∗

i ui (x)

Define divergence operator with respect to geometry g∗
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Equivalence between harmonic and divergence-free games

Theorem ([LMP24])

A finite game Γ = Γ(N ,A, u) is harmonic with uniform measure µiαi = 1 if and only if its associated replicator

vector field gradg
∗

i ui (x) has zero divergence under the geometry g∗.

By Liouville’s theorem, RD on harmonic games is volume-preserving in strategy space;

RD has only bounded orbits in all games;

Recurrence follows by Poincaré’s theorem.
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Riemannian approach: Pros and cons

Pros

Surprising connection between Riemannian

construction and uniform harmonic games

Fine understanding of dynamics-geometry interplay

in strategy space

Cons

Harmonic / divergence-free equivalence fails

changing metric

Need to change approach for general FTRL case.

For general FTRL adapt standard method [MPP18]

→ relatively easy result, but lose geometrical interpretation of what happens in strategy space
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FTRL in harmonic games admits a constant of motion

Proposition ([Leg+24])

Let Γ = Γ(N ,A, u) be a finite game and consider a vector m ∈ RN
++ and a fully mixed strategy q ∈ X . Then the

function defined by

Fm,q(y) :=
∑

i
mi [hi (qi ) + h∗i (yi )− ⟨qi , yi ⟩]

is a constant of motion under FTRL if and only if Γ is harmonic with strategic center (m, q).

Davide Legacci (Université Grenoble Alpes) Learning in Games with Conflicting Interests October 30, 2024 – CJC-MA, Lyon 26 / 28



FTRL is divergence-free in all games in payoff spaceẏi = vi (x)

xi = Qi (yi )
=⇒ ẏi = vi

(
Q(y)

)
(FTRL)

dẏiαi

dyjβj

≡ 0 by multilinearitity of the payoff functions

By Liouville’s theorem, FTRL in payoff space is volume-preserving in all games ;

the constant of motion can be used to show that FTRL in harmonic games has only bounded orbits;

Recurrence follows by Poincaré’s theorem.
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