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Recurrence vs Convergence

Mission

• we have algorithms that on some games exhibit good
convergence properties

• for example, mirror descent sometimes converges to NE (more
on this later)

• but we often do not know why! Cf Martin’s work here

• Goal: identify properties of games that can explain (non)
convergence

• classify games that are intrinsically hard to learn

• propose learning algo. that minimizes cycling

• How? Two decomposition techniques; one review, one original
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Combinatorial decomposition for finite normal form games
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Mirror descent overview



Finite normal form games

Goal

Introduce payoff and simultaneous gradient of finite normal
form game

Why?

Used in learning algorithm and in geometrical decomposition
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Mirror descent overview

Finite normal form games



Finite normal form game Γ = (N ,A,u)

• N = {1, 2, . . . ,N} set of players, index i
• Set of pure strategies Ai = {1, 2, . . . , Ai} for each player
• A =

∏
i∈N Ai set of pure strategy profiles

• Payoff
u : A → RN, a 7→ (u1, . . . ,uN)(a)

• ui(a) = payoff of player i ∈ N at pure strategy profile a ∈ A
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Definitions
Finite normal form game Γ = (N ,A,u)

• think of A as the space of states of the game; an element is a
tuple that contains one strategy for each player

• given a strategy profile - a state - each player gets some payoff...

• ...and putting these together we get the global payoff

• this is the object we’re interested in decomposing
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Mixed Extension

Mixed strategy: probability distribution over pure strategies

for each player i ∈ N , xi ∈ Xi = ∆(Ai) ⊂ Vi = RAi

Expected payoff

ūi :
∏
i∈N

Xi → R, (x1, . . . , xN)︸ ︷︷ ︸
mixed strategy profile

7→ Ea∼x[ui(a)]

Simultaneous gradient vi : X → V∗
i = RAi

Gradient of exp. payoff ūi w.r.t. mixed strategy xi of player i

vi(x) :=
(
∂ūi(x)
∂xi,ai

)
ai∈Ai

∈ RAi

vi(x) · xi = ūi(x) ∈ R
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Definitions
Mixed Extension

• Expected payoff: expectation value of ui(a) where the pure
strategy profile a is drawn according to the probability
distribution x

ui :
∏
i∈N

Xi → R, (x1, . . . , xN)︸ ︷︷ ︸
mixed strategy profile

7→ Ea∼x[ui(a)] =
∑
a∈A

ui(a)
∏
j∈N

xj,aj︸ ︷︷ ︸
Px(a)

• Take V∗
i as notation to distinguish strategy space from payoff

space; deeper reason why vi ∈ V∗
i is that vi is actually a

differential, not a gradient, and as such it lives in the dual space



Mixed Extension

Mixed strategy: probability distribution over pure strategies

for each player i ∈ N , xi ∈ Xi = ∆(Ai) ⊂ Vi = RAi

Expected payoff
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Gradient of exp. payoff ūi w.r.t. mixed strategy xi of player i

vi(x) :=
(
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20
23
-1
0-
13

Recurrence vs Convergence
Mirror descent overview

Definitions
Mixed Extension

• Expected payoff: expectation value of ui(a) where the pure
strategy profile a is drawn according to the probability
distribution x

ui :
∏
i∈N

Xi → R, (x1, . . . , xN)︸ ︷︷ ︸
mixed strategy profile

7→ Ea∼x[ui(a)] =
∑
a∈A

ui(a)
∏
j∈N

xj,aj︸ ︷︷ ︸
Px(a)

• Take V∗
i as notation to distinguish strategy space from payoff

space; deeper reason why vi ∈ V∗
i is that vi is actually a

differential, not a gradient, and as such it lives in the dual space



Mixed Extension

Mixed strategy: probability distribution over pure strategies

for each player i ∈ N , xi ∈ Xi = ∆(Ai) ⊂ Vi = RAi

Expected payoff
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∂ūi(x)
∂xi,ai

)
ai∈Ai

∈ RAi

vi(x) · xi = ūi(x) ∈ R
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∂ūi(x)
∂xi,ai

)
ai∈Ai

∈ RAi

vi(x) · xi = ūi(x) ∈ R
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Gradient of exp. payoff ūi w.r.t. mixed strategy xi of player i

vi(x) :=
(
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Example - (2× 2) game

Strategies A1 = {A,B},A2 = {a,b}

Mixed strategy
x = (x1, x2) ∈ X1 ×X2

x1 = (xA, xB), x2 = (xa, xb)

Expected payoff for player 1

ū1(x) = u1(A,a) xAxa+u1(A,b) xAxb+u1(B,a) xBxa+u1(B,b) xBxb ∈ R

Simultaneous gradient first player v1(x) = (∂xA ū1, ∂xB ū1)

v1(x) =
(
u1(A,a) xa + u1(A,b) xb, u1(B,a) xa + u1(B,b) xb

)
v1(x) · x1 = ū1(x)
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Definitions
Example - (2× 2) game



Recap

Given finite normal form game Γ = (N ,A,u)

Payoff u : A → RN

• Object of combinatorial decomposition

Simultaneous gradient vi : X → RAi

• Used to define learning dynamics
• Object of smooth decomposition
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Definitions
Recap

• payoff takes pure strategy profile and gives corresponding
payoff for each player

• sim gradient takes mixed strategy profile x and gives Ai numbers
that dotted against xi ∈ Xi (which also contains Ai entries) gives
the number ūi(x)



Continuous Time Mirror Descent

• Individual payoff ūi(x) depends on strategy of all agents

• Continuous-time, deterministic, multi-agent decision
processes

• Agents aim at maximizing their payoff
• Future strategy depends on cumulative incurred payoff
• Choice map : cumulative payoff 7→ next mixed strategy
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Continuous Time Mirror Descent



Continuous Time Mirror Descent


yi(t) =

cumulative payoff of player i︷ ︸︸ ︷∫ t

0
vi (x(s)) ds

xi(t) = Qi (yi(t))︸ ︷︷ ︸
Choice map, to be definedẏi(t) = vi (x(t))

xi(t) = Qi (yi(t))
(MD)

• xi(t) ∈ Xi is mixed strategy of player i at time t
• yi(t) ∈ V∗

i aggregates payoffs of player i until time t
• Aggregate payoff used to update strategy via choice map Q
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Mirror Descent
Continuous Time Mirror Descent

• Given (N ,A,u)

• ...



Choice map and regularizer

Player’s set of optimal strategies given mixed strategy profile
x ∈ X

argmax
xi∈Xi

{vi(x) · xi}

Introduce nice1 regularizer

h : X → R

so that choice map is well-defined

Qi :V∗
i → Xi
vi 7−→ argmax

xi∈Xi

{vi · xi − h(x)}

1smooth, strongly convex, steep; for the non-steep case see [11]

10

Choice map and regularizer

Player’s set of optimal strategies given mixed strategy profile
x ∈ X

argmax
xi∈Xi

{vi(x) · xi}

Introduce nice1 regularizer

h : X → R

so that choice map is well-defined

Qi :V∗
i → Xi
vi 7−→ argmax

xi∈Xi

{vi · xi − h(x)}

1smooth, strongly convex, steep; for the non-steep case see [11]

20
23
-1
0-
13

Recurrence vs Convergence
Mirror descent overview

Mirror Descent
Choice map and regularizer

• Steep: ‖dh(xn)‖ → ∞ at the boundary of X



Example - Exponential MD and Replicator Dynamics [19, 22, 1]

• Entropic regularizer h(x) = x · log(x)
• Induces logit choice map

Q(y) = ey
ey · 1

For each player ẏ = v(x) and x = Q(y) gives

ẋi,ai = xi,ai
(
vi,ai(x)− ūi(x)

)
(RE)
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Mirror Descent
Example - Exponential MD and Replicator
Dynamics [19, 22, 1]

• Taylor Jonker 1978

• e.g. prisoner’s dilemma

• replicator name: the probability to use a pure strategy grows if
at the current game state the payoff of using such pure strategy
is higher than the expected payoff

• next we look at some convergence and non-convergence known
properties of (MD) on finite normal form games



Convergence in potential games under (MD)

Theorem (Mertikopoulos and Sandholm [11])
If x(t) → x∗ as t→ ∞ under (MD), then x∗ is Nash equilibrium

Archetypal example: potential games [14, 20]

CC[0](2,2) CD [1](0,3)

DC[1](3,0) DD [2](1,1)

1

1

1 1

ui(b)− ui(a) = ϕ(b)− ϕ(a)

for each player and each unilateral deviation
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Convergence and cycles
Convergence in potential games under (MD)

• Monderer Shapley 1996

• Left: RG. Nodes = pure st, edges = unil dev, on edge = payoff diff
of deviating player. Exact potential game: there exists scalar
function...

• right: dynamics in mixes strategy space for different initial
conditions converges to same pure strategy. On the axes the
probability of each player to play D, so that the mixed strategy
x = (x1, x2) = ((x1,D, x1,c), (x2,D, x2,c)) converges to ((1, 0), (1, 0))

• convergence to pure NE, max of potential

• yellow NE, green Pareto Efficient (there is no pareto
improvement. PO = str change (not unilateral) st at least one is
better and noone is worse



Cycles in zero-sum games under (MD)

Theorem (Mertikopoulos, Papadimitriou, and Piliouras [10])
Almost every solution trajectory x(t) under (MD) is Poincaré
recurrent on 2-player zero-sum games with an interior NE.

Theorem (L., Benedetti, Alishah, Mertikopoulos (wp))
(MD) dynamics on 2-player zero-sum games with an interior NE
are Hamiltonian.

111,-1 12 -1,1

21-1,1 22 1,-1

2

2

2 2
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Convergence and cycles
Cycles in zero-sum games under (MD)

• e.g. matching pennies

• right: again different trajectories for different initial conditions

• NE uniformly mixed (0.5, 0.5), (0.5, 0.5)



Questions

• How “close” a generic game is to a potential game?
• Does this measure say anything about convergence?
• Which is the key property making a game “hard to learn”,
i.e. displaying cycles?

⇒ Decomposition of games

potential component+ cycling component
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Mirror descent overview

Combinatorial decomposition for finite normal form games
Application: Two-players first-price sealed-bid auction

Decomposition for general games
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Combinatorial Hodge decomposition for Normal Form Games

Theorem (Candogan et al. [3])
Any finite normal form game (N ,A,u) admits an orthogonal
decomposition

u = uK + uP + uH

• uK is a normalization
component that does not
affect the dynamics

• uP is a potential game
• uH is an harmonic game

=⇒ candidate obstacle to
convergence
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Combinatorial decomposition for finite normal
form games

Combinatorial Hodge decomposition for
Normal Form Games

• rather than formal def let me give you intuition of what
harmonic games are by example on auctions



Application: Two-players first-price sealed-bid auction

• Two bidders assign a value to a good and place a bid
• Higher bidder wins and pays their bid
• Possibly different values
• Discretization of continuous bids interval

ui(xi, xj) =


vi − xi if xi > xj
vi−xi
2 if xi = xj

0 else

Toy example

• bids interval [0, 1] discretized in {0, 0.5, 1}
• v1 = 0.8 and v2 = 1
• No negative payoff: A1 = {0, 0.5} and A2 = {0, 0.5, 1}
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• full game bottom left; normalization not shown

• harmonic: net payoff flow at each node is zero

• strong correlation between harmonic and cycling

• harmonic always admits interior NE and never have pure NE

• space of harmonic and zero-sum has big non-trivial intersection
(e.g. harmonic games where players have equal number of
strategies are zero-sum games

• empirically, MD seems to cycle in harmonic games

• may be correct ingredient for non-convergence, more general
than zero sum!



Decomposition of auctions and MD - Research questions

• (MD) empirically converges to BNE in many continuous
auctions2

• Discretize and decompose
• Potentialness and convergence

p =
‖uP‖

‖uP‖+ ‖uH‖

• Convex combination and convergence threshold

u(α) = αuP + (1− α)uH

2Bichler, Fichtl, and Oberlechner [2]
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questions• currently joint work with Bary Pradelski, Martin Bichler, Matthias

Oberlechner, Panayotis Mertikopoulos

• Potentialness p = ∥uP∥
∥uP∥+∥uH∥ . How does high p correlate with

convergence (necessary, sufficient)?

• Perturbation of the potential component building a new game
as a convex combination of the potential and the harmonic
components: u(α) = αuP + (1− α)uH. Is there a threshold of
harmonic perturbation at which convergence breaks?
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Decomposition of auctions and MD - Experiments3
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Decomposition of auctions and MD -
Experimentsa

aCredits to Matthias Oberlechner for the great image!

• first: star = origianl game; right and left games built as convex
combination; plotted potentialness vs convergence for various
types of auctions

• second: same plot changing coordinates (original game fixed in
the middle; growing parameter alpha = higher potentialness

• windows of non-covergence at higher potentialness probably
numerical (related to learning step)

• MD on the unperturbed game almost always converges, but high
potentialness does not seem to be necessary for convergence
but it is sufficient, as expected)

• open direction!



Mirror descent overview

Combinatorial decomposition for finite normal form games

Decomposition for general games
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Limits of the combinatorial decomposition

• applies only to finite normal form games
• inner product / regularizer
• normalization choice

Smooth decomposition

• applies to any game (in the following, population games)
• same regularizer for decomposition and dynamics
• decompose directly simultaneous gradient, no
normalization step
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Limits of the combinatorial decomposition

• decomposition relies on two choices: inner product and
normalisation

• dynamics relies on choice of regularizer

• these choices are unrelated, so one can question whether there
should be any relation between dynamics and decomposition

• KEY IDEA reason to decompose sim. gradient is that it naturally
lives in a space where a Hodge decomposition theorem applies,
for free! Technically speaking, 1-form. Intuitively, derivatives of
payoff. In simple case of pop game, sim. gradient = payoff. In
finite nfg as we saw, sim gradient is more complicated. For
simpliciti focus on single pop game; wlog.
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Single Population Game [20, 12]

• Continuum of agents (population)
• Set of pure strategies A = {1, 2, . . . , A}
• X = ∆(A), distributions of pure strategies in the
population

• State space X , population state x ∈ X
• xa = fraction of population playing a ∈ A
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Single Population Game [20, 12]

• Storyline: imagine pop. of identical agents meeting and playing
a normal form game; this gives a distribution of strategies in the
population, changing over time.



Single Population Game [20, 12]

• Payoff u : X → RA

ua(x) = payoff of a-strategist at state x

• Expected payoff ū : X × X → R

ū(y, x) = y ·u(x) = expected payoff of y-strategist at state x

• Simultaneous gradient v : X →
(
RA

)∗
Gradient of exp. payoff ū(y, x) w.r.t. mixed strategy y

v(x) := ∂ū(y, x)
∂y = u(x)
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Single Population Game [20, 12]

• Expected payoff ū : X × X → R

ū(y, x) = y · u(x) = expected payoff of y-strategist at state x

ū(y, x) = Ea∼y[ua(x)]

for fixed state x, expectation value of the number ua(x) where a
is drawn according to the distribution y

• sim. gradient is just payoff for single pop game, simpler to deal
with. Wlog, can (probably) do with finite nfg, continuous
strategy setting, ... wip



Hodge decomposition in a nutshell [6, 16]

• Choose regularizer h : X → R as in (MD)
• g = Hessh

δv = co-differential = gml
(
∂lvm − Γjml vj

)
df = differential = (∂1f, . . . , ∂Af)

Theorem (L., Mertikopoulos, Pradelski (2023))
Given a choice of regularizer, the simultaneous gradient of a
population game with at lest 3 strategies admits a unique
orthogonal decomposition

v = df+ β (H)

for some potential function f and some β such that δβ = 0.
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Hodge decomposition in a nutshell [6, 16]

Under the carpet

• simply connected domain, can identify exact with closed and
forget about harmonic

• codifferential is defined classically in terms of Hodge operator
on forms

• compactness issue, technical proof based on isometry

• Strong convexity⇒ Hessh is bilinear, symmetric,
positive-definite⇒ metric



Consequences of Theorem (H)

• Potential games are precisely those s.t. v = df, i.e. β = 0
• Games s.t. v = β are called co-exact

Proposition (L., Mertikopoulos, Pradelski (wp))
(MD) is volume-preserving on co-exact population games. In
particular, there is no interior attractor. Again in particular,
there is no interior ESS.

Proof.
By standard divergence theorem, the flow of a vector field is
volume-preserving iff the vector field is divergence-free. The result holds
generalizing the divergence with the δ operator. The rest follows since ESSs
are asymptotically stable under (MD) [12].
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Consequences of Theorem (H)

• may be surprised by the term coexact and not harmonic.
Actually, Hodge dec both in combinatorial and smooth setting
has 3 components: exact, coexact, harmonic. Interestingly the
coexact components vanishes in the combintorial setting and
the harmonic one vanished in the smooth setting. The
topological reason for this fact is clear and related to the
nummber of holes of the space where the decomposition takes
place. Game theorethically this is less clear, especially because
the harmonic components and the coexact components seem
to embody the same non-convergence nature, as opposed to
the potential counterpart.



Co-exact game and harmonic games

Proposition (L., Mertikopoulos, Pradelski (2023))
A population game with linear zero-sum payoff v(x) = Ax is
co-exact with respect to the entropic regularizer iff the bimatrix
normal form game (A,AT) is harmonic.

Corollary This implies the uniformly mixed strategy is a NE, so
on this class of co-exact games (MD) dynamics is recurrent and
Hamiltonian.
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Co-exact game and harmonic games



Reminder - Cycles in zero-sum games under (MD)

Theorem (Mertikopoulos, Papadimitriou, and Piliouras [10])
Almost every solution trajectory x(t) under (MD) is Poincaré
recurrent on 2-player zero-sum games with an interior NE.

Theorem (L., Benedetti, Alishah, Mertikopoulos (wp))
(MD) dynamics on 2-player zero-sum games with an interior NE
are Hamiltonian.

111,-1 12 -1,1

21-1,1 22 1,-1

2

2

2 2
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From here

• Characterize co-exact non zero-sum game. Obstacle:
computation with Christoffel symbols, “derivation”
problem

• Perform explicit decomposition v = df+ β. Obstacle: solve
Laplace equation, integration problem

As in normal form game case

• Potentialness and convergence (necessary, sufficient?)
• Perturbation. Convergence breaks at constant?
(animation)
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To recap - Mirror descent and Games Decomposition

• Decomposition techniques separate potential-converging
component from cycling component =⇒ characterize
games “hard to learn” as co-exact

• Regularizer determines both the learning dynamics and
the geometrical decomposition =⇒ choose regularizer
that minimizes co-exact component

Thanks!
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