The Poisson Geometry of Replicator Dynamics

Davide Legacci September 11, 2020

Heidelberg University

Poisson geometry

Simplex stratified Poisson structure

Evolutionary games and replicator dynamics

Zero-sum replicator dynamics

Poisson geometry

- Dynamical system describing evolution of distribution of frequencies
- Discrete probability distribution

$$x \in \Delta^n \subset \mathbb{R}^{n+1} = \{ x \in \mathbb{R}^{n+1} : \sum_i x^i = 1, x^i \ge 0 \}$$
(1)

No symplectic structure on odd faces

 $(\textit{V},\circ,\{\cdot,\cdot\})$ vector space with two bilinear operations

- (V, K, \circ) associative algebra
- (V, K, $\{\cdot, \cdot\}$) Lie algebra (a.s. and Jacobi)
- $\{\cdot, \cdot\}$ derivation with respect to \circ in both arguments, namely for any fixed $u \in V$ the map $\{u, \cdot\} : V \to V$ fulfills

$$\{u, a \circ b\} = \{u, a\} \circ b + a \circ \{u, b\}$$

$$(2)$$

for any $a, b \in V$, and similarly for $\{\cdot, u\}$.

The map $\{\cdot, \cdot\}$ is called Poisson bracket.

 $(\textit{V},\circ,\{\cdot,\cdot\})$ vector space with two bilinear operations

- (V, K, \circ) associative algebra
- (V, K, $\{\cdot, \cdot\}$) Lie algebra (a.s. and Jacobi)
- $\{\cdot, \cdot\}$ derivation with respect to \circ in both arguments, namely for any fixed $u \in V$ the map $\{u, \cdot\} : V \to V$ fulfills

$$\{u, a \circ b\} = \{u, a\} \circ b + a \circ \{u, b\}$$

$$(2)$$

for any $a, b \in V$, and similarly for $\{\cdot, u\}$.

The map $\{\cdot, \cdot\}$ is called Poisson bracket.

- Smooth manifold M with a Poisson bracket
 {·,·}: C[∞](M) × C[∞](M) → C[∞](M) making (C[∞](M), {·,·}) a
 Poisson algebra.
- Poisson bivector: π antisymmetric (2,0) tensor field¹

$$\{f,g\} = \pi(\mathrm{d}f,\mathrm{d}g) \tag{3}$$

$$\sum_{\text{cyclic } i,j,h} \pi^{ik} \, \partial_k \pi^{jh} = 0 \qquad \qquad (\text{Jacobi})$$

¹[Vai94, p. 4][DZ05, p. 6][LM87, p. 109]

- Smooth manifold M with a Poisson bracket
 {·,·}: C[∞](M) × C[∞](M) → C[∞](M) making (C[∞](M), {·,·}) a
 Poisson algebra.
- Poisson bivector: π antisymmetric (2, 0) tensor field¹

(

$$\{f,g\} = \pi(\mathrm{d}f,\mathrm{d}g) \tag{3}$$

$$\sum_{\text{cyclic } i,j,h} \pi^{ik} \partial_k \pi^{jh} = 0 \qquad \qquad (\text{Jacobi})$$

¹[Vai94, p. 4][DZ05, p. 6][LM87, p. 109]

• $[\pi,\pi]_S = 0$ Schouten-Nijenhuis bracket²

Symplectic manifold is Poisson³

 $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ $(f, g) \longmapsto \{f, g\} = \omega(X_f, X_g) = \pi(\mathrm{d}f, \mathrm{d}g)$ (4)

²[Vai94, p. 6] [DZ05, p. 27][BV88] ³Sign convention $\iota_{X_{f}\omega} = -df$

- $[\pi,\pi]_S = 0$ Schouten-Nijenhuis bracket²
- Symplectic manifold is Poisson³

$$\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$$

$$(f,g) \longmapsto \{f,g\} = \omega(X_f, X_g) = \pi(\mathrm{d}f, \mathrm{d}g)$$

$$(4)$$

²[Vai94, p. 6] [DZ05, p. 27][BV88] ³Sign convention $\iota_{X_{f}\omega} = -df$

Poisson Hamiltonian vector field

- Sharp homomorphism $\sharp : \Omega(M) \to \tau(M)$ defined also if π degenerate
- Hamiltonian vector field

$$X_f = (\mathrm{d}f)^{\sharp} = \pi(\mathrm{d}f, \cdot) \tag{5}$$

$$X_f f = \pi(\mathrm{d}f, \mathrm{d}f) \equiv 0 \tag{6}$$

Nondegenerate Poisson manifold is symplectic

$$\omega(X,Y) = \pi(X^{\flat_{\pi}}, Y^{\flat_{\pi}}), \quad \forall X, Y \in \tau(M)$$
(7)

Jacobi grants closedness of ω !

Poisson Hamiltonian vector field

- Sharp homomorphism $\sharp : \Omega(M) \to \tau(M)$ defined also if π degenerate
- Hamiltonian vector field

$$X_f = (\mathrm{d}f)^{\sharp} = \pi(\mathrm{d}f, \cdot) \tag{5}$$

$$X_f f = \pi(\mathrm{d}f, \mathrm{d}f) \equiv 0 \tag{6}$$

Nondegenerate Poisson manifold is symplectic

$$\omega(X, Y) = \pi(X^{\flat_{\pi}}, Y^{\flat_{\pi}}), \quad \forall X, Y \in \tau(M)$$
(7)

Jacobi grants closedness of ω !

Poisson morphism F: $(M, \pi_M) \rightarrow (N, \pi_N)$

• bivectors are *F*-related

$$\pi_{\mathcal{M}}(f \circ F, g \circ F) = \pi_{\mathcal{N}}(f, g) \circ F, \quad \forall f, g \in C^{\infty}(\mathcal{N})$$
(8)

• pullback is Lie algebra homomorphism

$$\{F^*f, F^*g\}_M = F^*\{f, g\}_N$$
(9)

Poisson vector field ⇐ Hamiltonian vector field⁴

$$\mathscr{L}_{\mathsf{X}}\pi = 0 \tag{10}$$

Local flow $\Theta_t(p)$ is Poisson diffeomorphism

⁴LM87, p. 122.

Poisson morphism F: $(M, \pi_M) \rightarrow (N, \pi_N)$

• bivectors are *F*-related

$$\pi_{\mathcal{M}}(f \circ F, g \circ F) = \pi_{\mathcal{N}}(f, g) \circ F, \quad \forall f, g \in C^{\infty}(\mathcal{N})$$
(8)

• pullback is Lie algebra homomorphism

$$\{F^*f, F^*g\}_M = F^*\{f, g\}_N$$
(9)

Poisson vector field ← Hamiltonian vector field⁴

$$\mathscr{L}_{\mathsf{X}}\pi = 0 \tag{10}$$

Local flow $\Theta_t(p)$ is Poisson diffeomorphism

⁴LM87, p. 122.

$$F : \mathbb{R}^{4} \to \mathbb{R}^{2}$$

$$(q^{1}, p^{1}, q^{2}, p^{2}) \longmapsto (x, y) = (q^{1}, p^{1})$$

$$\pi_{4}^{ij} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \quad \pi_{2}^{ij} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$J\pi_{M}J^{T} = \pi_{N} \circ F$$

How does the motion along Hamiltonian vector fields look like on a Poisson manifold?

- Poisson submanifold $\iota : S \to M$ such that every Hamiltonian vector field is tangent to S
- \cdot S Poisson manifold such that ι is Poisson morphism 5
- Characteristic space

$$C_{p} = \operatorname{Im}\left(\sharp_{p}\right) = \sharp_{p}\left(T_{p}^{*}M\right) \subset T_{p}M \tag{11}$$

How does the motion along Hamiltonian vector fields look like on a Poisson manifold?

- Poisson submanifold $\iota : S \to M$ such that every Hamiltonian vector field is tangent to S
- + S Poisson manifold such that ι is Poisson morphism 5
- Characteristic space

$$C_{p} = \operatorname{Im}\left(\sharp_{p}\right) = \sharp_{p}\left(T_{p}^{*}M\right) \subset T_{p}M \tag{11}$$

How does the motion along Hamiltonian vector fields look like on a Poisson manifold?

- Poisson submanifold $\iota : S \to M$ such that every Hamiltonian vector field is tangent to S
- + S Poisson manifold such that ι is Poisson morphism 5
- Characteristic space

$$C_p = \operatorname{Im}(\sharp_p) = \sharp_p(T_p^*M) \subset T_pM \tag{11}$$

⁵Mei17, p. 19.

Theorem (Symplectic foliation)

The characteristic distribution of a Poisson manifold is a smooth generalized distribution spanned by Hamiltonian vector fields. It is integrable, and its leaves S are nondegenerate Poisson submanifolds⁶.

⁶[OR04, p. 131][LM87, p. 130]

Theorem (Symplectic foliation)

The characteristic distribution of a Poisson manifold is a smooth generalized distribution spanned by Hamiltonian vector fields. It is integrable, and its leaves S are nondegenerate Poisson submanifolds⁶.

⁶[OR04, p. 131][LM87, p. 130]

Symplectic foliation of a Poisson manifold

- Every Poisson manifold is a union of disjoint immersed symplectic submanifolds, the immersion being a Poisson morphism.
- Two points belong to the same leaf if and only if they can be connected by a piecewise-smooth curve consisting of integral curves of Hamiltonian vector fields.
- The dimension of the leaf through a point is the rank of π at that point.

Symplectic foliation of a Poisson manifold

- Every Poisson manifold is a union of disjoint immersed symplectic submanifolds, the immersion being a Poisson morphism.
- Two points belong to the same leaf if and only if they can be connected by a piecewise-smooth curve consisting of integral curves of Hamiltonian vector fields.
- The dimension of the leaf through a point is the rank of π at that point.

Symplectic foliation of a Poisson manifold

- Every Poisson manifold is a union of disjoint immersed symplectic submanifolds, the immersion being a Poisson morphism.
- Two points belong to the same leaf if and only if they can be connected by a piecewise-smooth curve consisting of integral curves of Hamiltonian vector fields.
- The dimension of the leaf through a point is the rank of π at that point.

Problem: Let ψ : $G \times M \rightarrow M$ be a smooth action of a Lie group G on a manifold M.

- When is the quotient space a manifold?
- Does the quotient preserve structures existing on M?

Recall: the action of G on M is

- *proper*⁷ if [some technical condition about compactness], always given in the following
- *free* if all isotropy subgroups are trivial

Furthermore if (M, π) is a Poisson manifold the action of G is

 Poisson if the map g : p → g · p is a Poisson morphism for all g ∈ G, p ∈ M

⁷Lee12, p. 543.

Recall: the action of G on M is

- *proper*⁷ if [some technical condition about compactness], always given in the following
- free if all isotropy subgroups are trivial

Furthermore if (M, π) is a Poisson manifold the action of G is

• Poisson if the map $g: p \mapsto g \cdot p$ is a Poisson morphism for all $g \in G, p \in M$

⁷Lee12, p. 543.

Theorem (Quotient Manifold)

If a Lie group G acts smoothly, *freely* and properly on a smooth manifold M then the orbit space ^M/_G is a smooth manifold of dimension dimM – dimG with unique smooth structure such that the canonical projection is a smooth submersion⁸.

What happens removing freeness?

⁸Lee12, p. 544.

Let X be a topological space, and $S = {S_i}_{i \in I}$ a locally finite partition of X such that

- the pieces of S are locally closed smooth manifolds $S_i \subset X$, called *strata*;
- the strata fulfill a frontier condition.9

The pair (X, S) is called stratified space, or stratification of X.

⁹ if a stratum meets the closure of another, the first stratum is contained in the closure of second. $S_i \cap \overline{S}_j \neq \emptyset \Rightarrow S_i \subset \overline{S}_j$. See [OR04, p. 31].

- collection of manifolds fitting together nicely
- \cdot in general of different dimensions
- in general not a manifold itself
- e.g. intuitively, a simplex: manifolds = faces
- A SS can be endowed¹⁰ with an appropriate smooth structure and an algebra of smooth functions $C^{\infty}(X)$.

- · collection of manifolds fitting together nicely
- \cdot in general of different dimensions
- in general not a manifold itself
- e.g. intuitively, a simplex: manifolds = faces
- A SS can be endowed¹⁰ with an appropriate smooth structure and an algebra of smooth functions $C^{\infty}(X)$.

- · collection of manifolds fitting together nicely
- \cdot in general of different dimensions
- in general not a manifold itself
- e.g. intuitively, a simplex: manifolds = faces
- A SS can be endowed¹⁰ with an appropriate smooth structure and an algebra of smooth functions $C^{\infty}(X)$.

¹⁰OR04, p. 32.

Theorem (Stratification)

If a Lie group G acts smoothly and properly on a smooth manifold M then the orbit space ^M/_G is a smooth stratified space¹¹.

¹¹See [OR04, pp. 75,84] for the description of the strata as connected components of the reduced orbit type submanifolds.

Problem: Act with a Lie group *G* on a manifold *M*. When is the quotient space a manifold? Does the quotient space preserve structures existing on *M*?

Problem: Act with a Lie group *G* on a manifold *M*. When is the quotient space a manifold? Does the quotient space preserve structures existing on *M*?

A Poisson stratification¹² of a topological space X is a smooth stratification (X, S) with a Poisson algebra $(C^{\infty}(X), \{\cdot, \cdot\})$ such that

- each stratum is a Poisson manifold, and
- each inclusion is a Poisson morphism.

¹²ORF09, p. 1271.

Theorem (Poisson reduction)

G Lie group acting smoothly and properly on Poisson manifold (M, π) .

- Poisson action: the quotient space is a Poisson stratified space;
- Poisson free action: the quotient space is a Poisson manifold;
- unique structure such that the canonical projection is Poisson morphism.

¹³[OR04, p. 364] [ORF09, p. 1273]
Theorem (Poisson reduction)

G Lie group acting smoothly and properly on Poisson manifold (M, π) .

- Poisson action: the quotient space is a Poisson stratified space;
- Poisson free action: the quotient space is a Poisson manifold;
- unique structure such that the canonical projection is Poisson morphism.

¹³[OR04, p. 364] [ORF09, p. 1273]

Simplex stratified Poisson structure

The standard simplex

Figure 1: Simplices fully representable in three dimensions

$$\Delta^{n} \subset \mathbb{R}^{n+1} = \{ x \in \mathbb{R}^{n+1} : \sum_{i} x^{i} = 1, x^{i} \ge 0 \}$$
(12)

$$\Delta^n \subset \mathbb{R}^{n+1} = \{ x \in \mathbb{R}^{n+1} : \sum_i x^i = 1, x^i \ge 0 \}$$

•
$$I = \{0, ..., n\}$$

- $supp(x) = \{i \in I : x^i > 0\}$
- $J \subset I$ with d + 1 elements, $d = 0, \ldots, n$ defines
 - *d*-face $\mathring{\Delta}^{J} = \{x \in \Delta^{n} : \text{supp}(x) = J\}$
 - closed *d*-face $\Delta^J = \{x \in \Delta^n : \operatorname{supp}(x) \subset J\}$

¹⁴AL84, p. 235.

$$\Delta^n \subset \mathbb{R}^{n+1} = \{ x \in \mathbb{R}^{n+1} : \sum_i x^i = 1, x^i \ge 0 \}$$

•
$$I = \{0, \ldots, n\}$$

- $supp(x) = \{i \in I : x^i > 0\}$
- $J \subset I$ with d + 1 elements, $d = 0, \ldots, n$ defines
 - *d*-face $\mathring{\Delta}^{J} = \{x \in \Delta^{n} : \operatorname{supp}(x) = J\}$
 - closed *d*-face $\Delta^{J} = \{x \in \Delta^{n} : \text{supp}(x) \subset J\}$

¹⁴AL84, p. 235.

Goal: endow the standard simplex with a stratified Poisson structure via a double reduction procedure.

Regular Poisson reduction

- Quadratic Poisson structure¹⁵ $\{z_i, z_j\} = A_{ij} z_i z_j$ on $M = \mathbb{C}^{n+1} - \{0\}$
- A antisymmetric $(n + 1) \times (n + 1)$ (will be fitness matrix in zero-sum games)

Action of $G = \mathbb{C} - \{0\}$ on M by complex multiplication element-wise

 $\psi_{\lambda}(z) = \rho e^{i\alpha} \cdot (r_0, \dots, r_n, \theta_0, \dots, \theta_n) = (\rho r_0, \dots, \rho r_n, \alpha + \theta_0, \dots, \alpha + \theta_n)$

Free, proper and Poisson: ^M/_G Poisson manifold (*complex* projective space)

¹⁵ORF09.

Regular Poisson reduction

- Quadratic Poisson structure¹⁵ $\{z_i, z_j\} = A_{ij} z_i z_j$ on $M = \mathbb{C}^{n+1} - \{0\}$
- A antisymmetric $(n + 1) \times (n + 1)$ (will be fitness matrix in zero-sum games)

Action of $G = \mathbb{C} - \{0\}$ on M by complex multiplication element-wise

$$\psi_{\lambda}(z) = \rho e^{i\alpha} \cdot (r_0, \ldots, r_n, \theta_0, \ldots, \theta_n) = (\rho r_0, \ldots, \rho r_n, \alpha + \theta_0, \ldots, \alpha + \theta_n)$$

Free, proper and Poisson: ^M/_G Poisson manifold (*complex* projective space)

¹⁵ORF09.

Regular Poisson reduction

- Quadratic Poisson structure¹⁵ $\{z_i, z_j\} = A_{ij} z_i z_j$ on $M = \mathbb{C}^{n+1} - \{0\}$
- A antisymmetric $(n + 1) \times (n + 1)$ (will be fitness matrix in zero-sum games)

Action of $G = \mathbb{C} - \{0\}$ on M by complex multiplication element-wise

$$\psi_{\lambda}(z) = \rho e^{i\alpha} \cdot (r_0, \ldots, r_n, \theta_0, \ldots, \theta_n) = (\rho r_0, \ldots, \rho r_n, \alpha + \theta_0, \ldots, \alpha + \theta_n)$$

Free, proper and Poisson: ^M/_G Poisson manifold (*complex* projective space)

¹⁵ORF09.

Further action of \mathbb{T}^n on $^{M}/_{G}$:

$$\psi_{T}([Z]) = T \cdot [Z] = (e^{i\phi_{1}}, \dots, e^{i\phi_{n}}) \cdot [(Z_{0}, Z_{1}, \dots, Z_{n})]$$

$$= [(Z_{0}, e^{i\phi_{1}}Z_{1}, \dots, e^{i\phi_{n}}Z_{n})]$$
(13)

- well defined for any representative element of the class
- Poisson and proper, not free
- $\mathbb{C}^{P(n)}/_{\mathbb{T}^n}$ Poisson stratified space

Further action of \mathbb{T}^n on $^{M}/_{G}$:

$$\psi_{T}([Z]) = T \cdot [Z] = (e^{i\phi_{1}}, \dots, e^{i\phi_{n}}) \cdot [(Z_{0}, Z_{1}, \dots, Z_{n})]$$

$$= [(Z_{0}, e^{i\phi_{1}}Z_{1}, \dots, e^{i\phi_{n}}Z_{n})]$$
(13)

- well defined for any representative element of the class
- Poisson and proper, not free
- $\mathbb{C}^{P(n)}/_{\mathbb{T}^n}$ Poisson stratified space

Further action of \mathbb{T}^n on $^{M}/_{G}$:

$$\psi_{T}([Z]) = T \cdot [Z] = (e^{i\phi_{1}}, \dots, e^{i\phi_{n}}) \cdot [(Z_{0}, Z_{1}, \dots, Z_{n})]$$

$$= [(Z_{0}, e^{i\phi_{1}}Z_{1}, \dots, e^{i\phi_{n}}Z_{n})]$$
(13)

- well defined for any representative element of the class
- Poisson and proper, not free
- $\mathbb{C}^{P(n)}/_{\mathbb{T}^n}$ Poisson stratified space

$$\pi : \mathbb{C}P(n) \to^{\mathbb{C}P(n)} /_{\mathbb{T}^n}$$
$$[(r_i, \theta_i)] \longmapsto [(r_i)]$$
$$\xi : \mathbb{C}P(n) \to \Delta^n \subset \mathbb{R}^{n+1}$$
$$[z] \longmapsto \left(\frac{r_0^2}{r_0^2 + \dots + r_n^2}, \cdots, \frac{r_n^2}{r_0^2 + \dots + r_n^2}\right)$$

- well defined
- onto the standard simplex
- $[Z] \sim_{\xi} [W] \iff [Z] \sim_{\mathbb{T}^n} [W]$

$$\Delta^n \cong {}^{\mathbb{C}P(n)}/_{\mathbb{T}^n} \tag{14}$$

The standard simplex is a Poisson stratified space with unique Poisson structure such that the canonical projection is a Poisson morphism.

$$\pi : \mathbb{C}P(n) \to^{\mathbb{C}P(n)} /_{\mathbb{T}^n}$$
$$[(r_i, \theta_i)] \longmapsto [(r_i)]$$
$$\xi : \mathbb{C}P(n) \to \Delta^n \subset \mathbb{R}^{n+1}$$
$$[z] \longmapsto \left(\frac{r_0^2}{r_0^2 + \dots + r_n^2}, \dots, \frac{r_n^2}{r_0^2 + \dots + r_n^2}\right)$$

- \cdot well defined
- \cdot onto the standard simplex
- $[Z] \sim_{\xi} [W] \iff [Z] \sim_{\mathbb{T}^n} [W]$

$$\Delta^n \cong {}^{\mathbb{C}P(n)}/_{\mathbb{T}^n} \tag{14}$$

The standard simplex is a Poisson stratified space with unique Poisson structure such that the canonical projection is a Poisson morphism.

$$\pi : \mathbb{C}P(n) \to^{\mathbb{C}P(n)} /_{\mathbb{T}^n}$$
$$[(r_i, \theta_i)] \longmapsto [(r_i)]$$
$$\xi : \mathbb{C}P(n) \to \Delta^n \subset \mathbb{R}^{n+1}$$
$$[z] \longmapsto \left(\frac{r_0^2}{r_0^2 + \dots + r_n^2}, \cdots, \frac{r_n^2}{r_0^2 + \dots + r_n^2}\right)$$

- \cdot well defined
- onto the standard simplex
- $[Z] \sim_{\xi} [W] \iff [Z] \sim_{\mathbb{T}^n} [W]$

$$\Delta^n \cong {}^{\mathbb{C}P(n)}/_{\mathbb{T}^n} \tag{14}$$

The standard simplex is a Poisson stratified space with unique Poisson structure such that the canonical projection is a Poisson morphism.

The stratified Poisson structure of a simplex

- The strata are precisely the faces of the simplex¹⁶
- The resulting Poisson structure on Δ^n is

$$\{x^{i}, x^{j}\} = x^{i}x^{j}\left(A_{ij} - \sum_{h}(A_{ih} + A_{hj})x^{h}\right)$$
(15)

• This actually is a Poisson structure for the whole *R*^{*n*+1} such that the faces are Poisson submanifolds.

¹⁶Isotropy type submanifolds analysis.

The stratified Poisson structure of a simplex

- The strata are precisely the faces of the simplex¹⁶
- The resulting Poisson structure on Δ^n is

$$\{x^{i}, x^{j}\} = x^{i}x^{j}\left(A_{ij} - \sum_{h}(A_{ih} + A_{hj})x^{h}\right)$$
(15)

• This actually is a Poisson structure for the whole *R*^{*n*+1} such that the faces are Poisson submanifolds.

¹⁶Isotropy type submanifolds analysis.

The stratified Poisson structure of a simplex

- The strata are precisely the faces of the simplex¹⁶
- The resulting Poisson structure on Δ^n is

$$\{x^{i}, x^{j}\} = x^{i} x^{j} \left(A_{ij} - \sum_{h} (A_{ih} + A_{hj}) x^{h}\right)$$
(15)

• This actually is a Poisson structure for the whole R^{n+1} such that the faces are Poisson submanifolds.

¹⁶Isotropy type submanifolds analysis.

Next step: A zero-sum replicator dynamical system on Δ^n is Hamiltonian with respect to this Poisson structure if it admits an interior fixpoint¹⁷.

- Encyclopedia on Hamiltonian reduction [OR04]
- Simplex Stratified Poisson structure [ORF09], [AD14]

Evolutionary games and replicator dynamics

- Consider a population composed of interacting individuals;
- each individual has at its disposal a finite set of behaviors, traits, pure strategies to adopt;
- on this choice and via the interaction with other individuals depends his fitness, his well-being, his payoff, measured in some units;
- via some mechanism (inheritance, learning, imitation, mutation, ...) successful strategies spread;
- how does the average population strategy evolve?

An *N*-normal form game (Δ^N, g) is the collection of

- a set of N + 1 pure strategies $\{R_0, \ldots, R_N\}$;
- a game space $\Delta^{N} \in \mathbb{R}^{N+1}$
- a *population* of interacting individuals;
- a payoff function

$$g: \Delta^{N} \times \Delta^{N} \to \mathbb{R}$$

$$p, q \longmapsto g(p, q)$$
(16)

A point in game space is called a strategy, and g(p,q) is the payoff of the strategy p against the strategy q.

¹⁸HS98, p. 57.

Strategies and pure strategies

- Pure strategies: belong to some abstract strategy space. Behavior, physical trait, belief, ...
- Strategy
 - discrete probability distribution of pure strategies usage for a single individual;
 - distribution of pure strategies in the population.
 - $\cdot p^i \ge 0, \sum_i p^i = 1 \Rightarrow p \in \Delta^N$
- Identify abstract *pure* strategy *R_i* with vertex strategy *e_i* of simplex
- $\cdot p = p^i e_i$

Strategies and pure strategies

- Pure strategies: belong to some abstract strategy space. Behavior, physical trait, belief, ...
- Strategy
 - discrete probability distribution of pure strategies usage for a single individual;
 - distribution of pure strategies in the population.
 - $p^i \ge 0, \sum_i p^i = 1 \Rightarrow p \in \Delta^N$
- Identify abstract *pure* strategy *R_i* with vertex strategy *e_i* of simplex
- $p = p^i e_i$

Strategies and pure strategies

- Pure strategies: belong to some abstract strategy space. Behavior, physical trait, belief, ...
- Strategy
 - discrete probability distribution of pure strategies usage for a single individual;
 - distribution of pure strategies in the population.
 - $p^i \ge 0, \sum_i p^i = 1 \Rightarrow p \in \Delta^N$
- Identify abstract *pure* strategy *R_i* with vertex strategy *e_i* of simplex
- $p = p^i e_i$

- Local: the payoff of an individual employing a certain strategy depends on the outcome of a pairwise encounter with another individual
 - bilinear payoff
 - e.g. Hawks and Doves
- **Global**: no actual pairwise encounter occurs; the payoff of a strategy depends on the actual state of the population as a whole
 - nonlinear payoff
 - e.g. sex-ratio

- Local: the payoff of an individual employing a certain strategy depends on the outcome of a pairwise encounter with another individual
 - bilinear payoff
 - e.g. Hawks and Doves
- **Global**: no actual pairwise encounter occurs; the payoff of a strategy depends on the actual state of the population as a whole
 - nonlinear payoff
 - e.g. sex-ratio

$$g: \Delta^{N} \times \Delta^{N} \to \mathbb{R}$$

p, q \longrightarrow g(p, q) (17)

- g(p,q) = payoff to use strategy p vs strategy q
- Always linear in first argument: $g(p,q) = g(p^i e_i,q) = \sum_i (\text{prob. I use } i\text{-th pure strategy}) \cdot (\text{payoff of } i\text{-th pure strategy vs } q)$

$$= p^{i} g(e_{i}, q) =: p^{i} g_{i}(q)$$
 (18)

• Second?

1 vs 1, many times: random pairwise encounters in population

- *q* = *your* prob. distribution of pure strategies usage
- linearity in second argument

 $g_i(q)$ = payoff of *i*-th pure strategy vs q =

 \sum_{j} (payoff of *i*-th pure strategy vs *j*-th pure strategy) \cdot (prob. you use *j*-th pure strategy)

$$=g_i(e_j)\,q^j=:g_{ij}\,q^j \tag{19}$$

Payoff matrix $g_{ij} = g(e_i, e_j)$

- \cdot Non lethal fights between animals of the same species
- Darwinian fitness i.e. reproductive success
- carefully decide whether to escalate a fight or not

Consider two pure strategies:

- *Dove*: show off and provoke the opponent, but quit if the opponent actually escalates
- *Hawk*: fights until your or your opponent's defeat, no matter what.

- \cdot Non lethal fights between animals of the same species
- Darwinian fitness i.e. reproductive success
- carefully decide whether to escalate a fight or not

Consider two pure strategies:

- *Dove*: show off and provoke the opponent, but quit if the opponent actually escalates
- *Hawk*: fights until your or your opponent's defeat, no matter what.

- Avoided fight has no consequences;
- won fight increases fitness by gain G;
- lost fight decreases fitness by cost C > G.

	meeting a dove	meeting a hawk
a dove gets	G/2	0
a hawk gets	G	$\frac{G-C}{2}$

to be continued...

- Avoided fight has no consequences;
- won fight increases fitness by gain G;
- lost fight decreases fitness by cost C > G.

	meeting a dove	meeting a hawk
a dove gets	G/2	0
a hawk gets	G	$\frac{G-C}{2}$

to be continued...

No pairwise encounter occurs

- g(p,q) = payoff of a p-strategist in a population with average q-strategy
- Needs not be linear in second argument, e.g. sex ratio¹⁹

$$g(p,q) = \frac{p^0}{q^0} + \frac{p^1}{q^1}$$
(20)

The more females there are in a population, the less convenient it is to have female offspring.

¹⁹HS98, pp. 60,65.

Linear payoff in the following; similar results hold, taking care of adding a notion of locality to some definitions²⁰.

²⁰HS98, pp. 63,65.
• Set of best replies to $q \in \Delta^N$

$$\beta(q) = \{ p \in \Delta^N : g(p,q) = \max_{p' \in \Delta^N} g(p',q) \}$$
(21)

• Replace
$$p^0 = 1 - \sum_{i=1}^n p^i$$

$$g(p,q) = g_0(q) + \sum_{i=1}^n p^i \left(g_i(q) - g_0(q) \right)$$
(22)

• Non-linear in q does not matter: linear in p...

Set of best replies

... so that $\beta(q)$ is a nonempty union faces, containing a vertex at least and the whole simplex at most. A fixed q is the "inclination" of the payoff function.

Figure 2: g(p,q) for q fixed, as a function of p for Δ^2

$$g(p,q) = g_0(q) + \sum_{i=1}^{n} p^i \underbrace{(g_i(q) - g_0(q))}_{\equiv 0 \forall i \text{ at } \hat{q}}$$
(23)

- Strategy \hat{q} such that $g(p, \hat{q}) = g_i(\hat{q})$ for all *i*, no matter which *p*
- May or may not exists!
- $\beta(\hat{q}) = \Delta^{\Lambda}$
- Slope support:

 $g_i(p) = g_j(p) \quad \forall i, j \in \text{supp}(p)$

$$g(p,q) = g_0(q) + \sum_{i=1}^{n} p^i \underbrace{(g_i(q) - g_0(q))}_{\equiv 0 \forall i \text{ at } \hat{q}}$$
(23)

- Strategy \hat{q} such that $g(p, \hat{q}) = g_i(\hat{q})$ for all *i*, no matter which *p*
- May or may not exists!
- · $\beta(\hat{q}) = \Delta^N$
- Slope support:

 $g_i(p) = g_j(p) \quad \forall i, j \in \text{supp}(p)$

$$g(p,q) = g_0(q) + \sum_{i=1}^{n} p^i \underbrace{(g_i(q) - g_0(q))}_{\equiv 0 \forall i \text{ at } \hat{q}}$$
(23)

- Strategy \hat{q} such that $g(p, \hat{q}) = g_i(\hat{q})$ for all *i*, no matter which *p*
- May or may not exists!
- · $\beta(\hat{q}) = \Delta^N$
- Slope support:

 $g_i(p) = g_j(p) \quad \forall i, j \in \text{supp}(p)$

Nash strategy: best reply to itself, i.e. $p \in \beta(p)$

- Strict: $\beta(p) = p$, can only be vertex
- If slope exists, it is Nash $\beta(\hat{q}) = \Delta^N \ni \hat{q}$
- Nash has slope support
- Interior Nash strategy iff slope strategy

Nash strategy: best reply to itself, i.e. $p \in \beta(p)$

- Strict: $\beta(p) = p$, can only be vertex
- · If slope exists, it is Nash $\beta(\hat{q}) = \Delta^N \ni \hat{q}$
- Nash has slope support
- Interior Nash strategy iff slope strategy

Nash strategy: best reply to itself, i.e. $p \in \beta(p)$

- Strict: $\beta(p) = p$, can only be vertex
- If slope exists, it is Nash $\beta(\hat{q}) = \Delta^N
 i \hat{q}$
- Nash has slope support
- Interior Nash strategy iff slope strategy

- Crucial step from GT to EGT
- If alternative best reply exists, why should one stick with *p* Nash?

$$g(p,p) = g(q,p), \forall q \in \beta(p)$$
(24)

- Stable *p* Nash: $g(p,q) > g(q,q), \forall q \in \beta(p), q \neq p$
- Mutants check their own growth!
- Strictly population concept, doesn't make sense 1 vs 1. Indeed..

- Crucial step from GT to EGT
- If alternative best reply exists, why should one stick with *p* Nash?

$$g(p,p) = g(q,p), \forall q \in \beta(p)$$
(24)

- Stable *p* Nash: $g(p,q) > g(q,q), \forall q \in \beta(p), q \neq p$
- Mutants check their own growth!
- Strictly population concept, doesn't make sense 1 vs 1. Indeed..

- Crucial step from GT to EGT
- If alternative best reply exists, why should one stick with *p* Nash?

$$g(p,p) = g(q,p), \forall q \in \beta(p)$$
(24)

- Stable *p* Nash: $g(p,q) > g(q,q), \forall q \in \beta(p), q \neq p$
- Mutants check their own growth!
- Strictly population concept, doesn't make sense 1 vs 1. Indeed..

- Crucial step from GT to EGT
- If alternative best reply exists, why should one stick with *p* Nash?

$$g(p,p) = g(q,p), \forall q \in \beta(p)$$
(24)

- Stable *p* Nash: $g(p,q) > g(q,q), \forall q \in \beta(p), q \neq p$
- Mutants check their own growth!
- Strictly population concept, doesn't make sense 1 vs 1. Indeed..

Stable Nash if and only if²¹

• Evolutionarily stable strategy \hat{p} : if everybody is using it, a mutant minority can not invade

$$g(\hat{p},\epsilon p + (1-\epsilon)\hat{p}) > g(p,\epsilon p + (1-\epsilon)\hat{p})$$
(25)

for all $p \neq \hat{p}$, and for all $0 < \epsilon <$ some positive invasion threshold.

²¹HS98, p. 63.

 $p_s = (1 - \frac{G}{C}, \frac{G}{C})$ interior slope Nash strategy, stable.

Sweet spot of optimal frequency of engaged fights (in this case precisely the ratio G/C between the gain of a won fight and the cost of a lost one).

- Does a population reach an ES strategy?
- Model the evolution of the average population strategy driven by the interaction between the individuals of the population.
- Dynamical system on the simplex.

(Change notation: $p \rightarrow x; g \rightarrow f$)

- Does a population reach an ES strategy?
- Model the evolution of the average population strategy driven by the interaction between the individuals of the population.
- Dynamical system on the simplex.

(Change notation: $p \rightarrow x; g \rightarrow f$)

Basic model for evolution of types frequencies²²

• type *i* growth rate = its fitness - average population fitness

$$\dot{x}^{i} = x^{i} \left(f_{i}(x) - \overline{f}(x) \right)$$

$$\overline{f}(x) = \sum_{i} x^{i} f_{i}(x)$$
(26)
(27)

The replicator vector field is tangent to every face of the simplex $\Delta^N \rightarrow$ no mutations

²²TJ78.

Basic model for evolution of types frequencies²²

• type *i* growth rate = its fitness - average population fitness

$$\dot{x}^{i} = x^{i} \left(f_{i}(x) - \overline{f}(x) \right)$$
(26)

$$\overline{f}(x) = \sum_{i} x^{i} f_{i}(x)$$
(27)

The replicator vector field is tangent to every face of the simplex $\Delta^N \to$ no mutations

²²TJ78.

- \cdot replicator fixpoint \iff has slope support
- x Evolutionarily stable \Rightarrow x asymptotically stable fixpoint²³

A lot more to say on the relation between the static and dynamic notions of equilibria, both in the continuous and *discrete* replicator²⁴, but focus now on antisymmetric fitness function

²³HS98, p. 70. ²⁴Sel91, p. 29. Zero-sum replicator dynamics

- Gain of a player is exactly loss of another
- Extensively studied in classical GT²⁵
- Very restrictive assumption for real life applications
- Discrete zero-sum replicator: model for gene conversion²⁶
- Interesting in its own right for Hamiltonian character
- Related to Rock Paper Scissor games

²⁵Sig11, p. 4. ²⁶Nag83b; Nag83a. Three strategies cyclically beating each other (not necessarily zero-sum)

Figure 3: Rock Paper Scissor

- $f_i(x) = \sum_j A_{ij} x^j$
- A antisymmetric fitness matrix
- $\cdot \bar{f}(x) \equiv 0$

$$\dot{x}^i = x^i f_i(x) \tag{28}$$

- For ZSG only vertices can be ESS, not very interesting.
- Still two mutually exclusive classes of fixpoints on which the dynamics depends exist²⁷.

²⁷AL84.

Interior and Boundary semi-defined fixpoints

- $E_0 = \{x \in \mathring{\Delta} : f_i(x) = 0 \forall i\} \equiv \text{interior fixpoints}$
- $E_{-} = \{x \in \Delta : f_i(x) \leq 0 \text{ with at least one inequality strict}\}$
- $E_+ = \{x \in \Delta : f_i(x) \ge 0 \text{ with at least one inequality strict}\}$

Theorem

These three sets are convex subsets consisting entirely of equilibria. E_+ and E_- are subsets of the boundary of Δ . Precisely one of the following two scenarios occurs²⁸

- $E_0 \neq \emptyset, E_+ = \emptyset = E_-$, interior case;
- : $E_0 = \emptyset, E_+ \neq \emptyset, E_- \neq \emptyset$, boundary case.

²⁸AL84.

Upon $A \rightarrow -A$

- \cdot E_0 is invariant
- $\cdot \, {\it E}_{\pm}$ are exchanged

- Zero-sum replicator in interior case, $\hat{x} \in E_0$
- The replicator vector field is Hamiltonian with respect to (minus) the simplex Poisson structure²⁹
- A Hamiltonian function is $H_{\hat{X}}(x) = -\sum_{i} \hat{X}^{i} \ln x^{i}$
- $\cdot\,$ Convex and coercive with unique strict minimum at \hat{x}
- Proof: direct computation $dH^{\sharp} = X_{rep}$ using $f_i(\hat{x}) = 0 \forall i$.

²⁹AD14.

- Closure of interior trajectories is compact invariant set contained in $\mathring{\Delta}-{E_0}^{30}$
- Interior filled with invariant manifolds
- All interior fixpoints are neutrally stable
- coexistence, no strategy goes extinct

- Closure of interior trajectories is compact invariant set contained in $\mathring{\Delta}-{E_0}^{30}$
- Interior filled with invariant manifolds
- All interior fixpoints are neutrally stable
- coexistence, no strategy goes extinct

- Constant Poisson structure coordinates $y^i = \ln(x^i/x^0)$
- Hamiltonian in new coordinates still convex

$$H(y) = \ln\left(1 + \sum_{i} e^{y^{i}}\right) - \sum_{i} \hat{x}^{i} y^{i}$$
(29)

 From here: Convexity methods in Hamiltonian mechanics;
 "The dynamics on three-dimensional strictly convex energy surfaces" Replicator type: zerosum int, simplex dim. = 4, proj. = [1 2 3] Replicator type: zerosum int, simplex dim. = 4, proj. = [1 2 4]

Replicator type: zerosum_int, simplex dim. = 4, proj. = [1 3 4] Replicator type: zerosum_int, simplex dim. = 4, proj. = [2 3 4]

Figure 4: Zero-sum replicator - Hamiltonian interior case

Replicator type: zerosum int, simplex dim. = 4, proj. = [1 2 3] Replicator type: zerosum int, simplex dim. = 4, proj. = [1 2 4]

Replicator type: zerosum_int, simplex dim. = 4, proj. = [1 3 4] Replicator type: zerosum_int, simplex dim. = 4, proj. = [2 3 4]

Figure 5: Zero-sum replicator - Hamiltonian interior case

Replicator type: zerosum int, simplex dim. = 4, proj. = [1 2 3] Replicator type: zerosum int, simplex dim. = 4, proj. = [1 2 4]

Replicator type: zerosum_int, simplex dim. = 4, proj. = [1 3 4] Replicator type: zerosum_int, simplex dim. = 4, proj. = [2 3 4]

Figure 6: Zero-sum replicator - Hamiltonian interior case

Figure 7: Equivalent LV [HS98, p. 77] - Hamiltonian interior case

Zero sum replicator boundary dynamics

- Zero-sum replicator in boundary³¹ case $E_{\pm} \neq \emptyset$
- $e_- \in E_- \Rightarrow H_{e_-}$ strictly decreasing along interior trajectories
- The ω -limit of all interior trajectories is a subset of the boundary, in particular

$$J_{-} = \{i \in I : f_i(e_{-}) = 0 \,\forall e_{-} \in E_{-}\}$$

• strategies doing as well as possible against *E*_

³¹AL84, p. 239.

Zero sum replicator boundary dynamics

Indeed, J_ precisely surviving strategies!

$$\omega(p) \subset \Delta^{J_{-}} \forall p \in \mathring{\Delta}$$
(30)

• Points in the closed face

$$\Delta^{J_{-}}: i \notin J_{-} \Rightarrow x^{i} = 0$$

$$\lim_{t \to \infty} x^{i}(t) = 0 \text{ for all } i \notin J_{-}$$
(31)

Analogue results for E_+ and α -limit, so $A \rightarrow -A$ effective time reversal

Zero sum replicator boundary dynamics

Indeed, J_ precisely surviving strategies!

$$\omega(p) \subset \Delta^{J_{-}} \forall p \in \mathring{\Delta}$$
(30)

• Points in the closed face

$$\Delta^{J_{-}}: i \notin J_{-} \Rightarrow x^{i} = 0$$

$$\lim_{t \to \infty} x^{i}(t) = 0 \text{ for all } i \notin J_{-}$$
(31)

Analogue results for E_+ and α -limit, so $A \rightarrow -A$ effective time reversal
Zero sum replicator boundary dynamics

Indeed, J_ precisely surviving strategies!

$$\omega(p) \subset \Delta^{J_{-}} \forall p \in \mathring{\Delta}$$
(30)

• Points in the closed face

$$\Delta^{J_{-}}: i \notin J_{-} \Rightarrow x^{i} = 0$$

$$\lim_{t \to \infty} x^{i}(t) = 0 \text{ for all } i \notin J_{-}$$
(31)

Analogue results for E_+ and α -limit, so $A \rightarrow -A$ effective time reversal

$$\left(\mathsf{d} H^{\sharp} \right)' = X_{\mathsf{rep}}^{i} - x^{i} f_{i}(\hat{x}) + x^{i} \sum_{h \notin \mathsf{supp}(\hat{x})} x^{h} f_{h}(\hat{x})$$

- Extra terms vanish identically if \hat{x} interior equilibrium
- Extra terms vanish asymptotically if $\hat{x} \in E_{-}$
 - either $f_i(\hat{x}) = 0$ or $x^i \to 0$
- Correspondingly $\mathscr{L}_{X_{\mathsf{rep}}}\pi = \mathscr{L}_{\mathsf{d}H^{\sharp}}\pi + \mathscr{L}_{X_{\mathsf{bd}}}\pi$
- The first term vanishes identically and the second asymptotically
- It does not look like the second term can be written conformally as F(x)π with F vanishing on the future face; still work in progress.

$$\left(\mathsf{d} H^{\sharp} \right)' = X_{\mathsf{rep}}^{i} - x^{i} f_{i}(\hat{x}) + x^{i} \sum_{h \notin \mathsf{supp}(\hat{x})} x^{h} f_{h}(\hat{x})$$

- Extra terms vanish identically if \hat{x} interior equilibrium
- Extra terms vanish asymptotically if $\hat{x} \in E_{-}$
 - either $f_i(\hat{x}) = 0$ or $x^i \to 0$
- Correspondingly $\mathscr{L}_{X_{rep}}\pi = \mathscr{L}_{dH^{\sharp}}\pi + \mathscr{L}_{X_{bd}}\pi$
- The first term vanishes identically and the second asymptotically
- It does not look like the second term can be written conformally as $F(x)\pi$ with F vanishing on the future face; still work in progress.

Replicator type: zerosum bd, simplex dim. = 3 , proj. = [1 2 3]

Figure 8: Zero sum replicator, boundary scenario, α -limit

Replicator type: zerosum_bd, simplex dim. = 3 , proj. = [1 2 3]

Figure 9: Zero sum replicator, boundary scenario, ω-limit

Zero sum replicator boundary dynamics

$$\begin{bmatrix} 0 & -1.5 & 1.3 & -2.5 \\ 1.5 & 0 & -2.0 & 2.0 \\ -1.3 & 2.0 & 0 & -1.0 \\ 2.5 & -2.0 & 1.0 & 0 \end{bmatrix}$$

- $e_{-} = (0.2, 0.4, 0.4, 0), \quad f_i(e_{-}) = (-0.78, 0, 0, 0)$
- $J_{-} = \{1, 2, 3\}$ surviving in classical RPS dynamics
- 0 extincted

Zero sum replicator boundary dynamics

$$\begin{bmatrix} 0 & -1.5 & 1.3 & -2.5 \\ 1.5 & 0 & -2.0 & 2.0 \\ -1.3 & 2.0 & 0 & -1.0 \\ 2.5 & -2.0 & 1.0 & 0 \end{bmatrix}$$

- $e_+ = (0.27, 0.31, 0, 0.42), \quad f_i(e_+) = (0, 0, 0, +0.8)$
- 3 invaded in the past

Conclusions

- A simplex is endowed with a stratified Poisson structure via a reduction procedure; every face is a Poisson manifold.
- The replicator vector field modeling the evolution of the average population strategy is tangent to every face of the simplex
- Zero-sum dynamics with interior fixpoints is Hamiltonian (coexistence)
- Zero-sum dynamics with semi-definite boundary fixpoints is asymptotically Hamiltonian (competition)

On this system

- Degenerate replicator dynamics [HS98, p. 235]
- "Survival of the fittest" [AL84, p. 240] for boundary dynamics
- Dynamics on convex energy surfaces [HWZ98]
- Hamiltonian chaos and discrete replicator [SC03][PMC18][AL84][Sel91]
- Further investigate connection with Lotka-Volterra system [DF098]

On this system

- Degenerate replicator dynamics [HS98, p. 235]
- "Survival of the fittest" [AL84, p. 240] for boundary dynamics
- Dynamics on convex energy surfaces [HWZ98]
- Hamiltonian chaos and discrete replicator [SC03][PMC18][AL84][Sel91]
- Further investigate connection with Lotka-Volterra system [DFO98]

On different systems

- Add interaction: bimatrix and polimatrix games [Hof96], [AD14]
- Investigate geometry of different dynamics: imitation, best-response, adaptive, mutator, ...[HS98], [Aki79], [GP04]

References

Hassan Najafi Alishah and Pedro Duarte. "Hamiltonian evolutionary games". In: arXiv preprint arXiv:1404.5900 (2014).
Lars Ahlfors. <i>Complex Analysis (Third Edition)</i> . 3rd ed. McGraw-Hill ScienceEngineeringMath, 1979.
Ethan Akin. <i>The Geometry of Population Genetics</i> . 1st ed. Lecture Notes in Biomathematics 31. Springer-Verlag Berlin Heidelberg, 1979. ISBN: 978-3-540-09711-2,978-3-642-93128-4.
Ethan Akin and Viktor Losert. "Evolutionary dynamics of zero-sum games". In: Journal of mathematical biology 20.3 (1984), pp. 231–258.
KH Bhaskara and K Viswanath. "Poisson algebras and Poisson manifolds, Pitman Res". In: <i>Notes in Math</i> 174 (1988).

- Pedro Duarte, Rui L Fernandes, and Waldyr M Oliva. "Dynamics of the attractor in the Lotka-Volterra equations". In: *journal of differential equations* 149.1 (1998), pp. 143–189.

- Jean-Paul Dufour and Nguyen Tien Zung. *Poisson Structures and Their Normal Forms*. 1st ed. Progress in Mathematics 242. Birkhäuser Basel, 2005.

- Ivar Ekeland. *Convexity methods in Hamiltonian mechanics*. Vol. 19. Springer Science and Business Media, 2012.
- Vasyl V Gafiychuk and Anatoliy K Prykarpatsky. "Replicator Mutator Evolutionary Dynamics". In: *Journal of Nonlinear Mathematical Physics* 11.3 (2004), pp. 350–360. DOI: 10.2991/jnmp.2004.11.3.6. eprint: https://doi.org/10.2991/jnmp.2004.11.3.6. URL: https://doi.org/10.2991/jnmp.2004.11.3.6.
- Josef Hofbauer. "Evolutionary dynamics for bimatrix games: A Hamiltonian system?" In: Journal of Mathematical Biology 34.5 (May 1996), p. 675. ISSN: 1432-1416. DOI: 10.1007/BF02409754. URL: https://doi.org/10.1007/BF02409754.
- Josef Hofbauer and Karl Sigmund. *Evolutionary games and population dynamics*. Cambridge University Press, 1998.

- Helmut Hofer, Krzusztof Wysocki, and Eduard Zehnder. "The dynamics on three-dimensional strictly convex energy surfaces". In: *Annals of Mathematics* (1998), pp. 197–289.

John M. Lee. *Introduction to Smooth Manifolds*. 2nd ed. Graduate Texts in Mathematics. Springer-Verlag New York, 2012.

- Paulette Libermann and Charles-Michel Marle. *Symplectic Geometry and Analytical Mechanics*. 1st ed. Mathematics and Its Applications 35. Springer Netherlands, 1987.
- Eckhard Meinrenken. Introduction to Poisson Geometry. Heidelberg University. 2017.
- Robert McLachlan and Matthew Perlmutter. "Conformal Hamiltonian systems". In: *Journal of Geometry and Physics* 39.4 (2001), pp. 276–300.
- T Nagylaki. "Evolution of a finite population under gene conversion". In: Proceedings of the National Academy of Sciences 80.20 (1983), pp. 6278–6281. ISSN: 0027-8424. DOI: 10.1073/pnas.80.20.6278. eprint: https://www.pnas.org/content/80/20/6278.full.pdf.URL: https://www.pnas.org/content/80/20/6278.

Thomas Nagylaki. "Evolution of a large population under gene conversion". In: Proceedings of the National Academy of Sciences 80.19 (1983). pp. 5941-5945. Juan-Pablo Ortega and Tudor S. Ratiu. Momentum Maps and Hamiltonian Reduction. 1st ed. Progress in Mathematics 222. Birkhäuser Basel, 2004. Juan-Pablo Ortega, Tudor S. Ratiu, and Rui Loja Fernandes. "The momentum map in Poisson geometry". In: American journal of mathematics 131.5 (2009), pp. 1261–1310. Varun Pandit, Archan Mukhopadhyay, and Sagar Chakraborty. "Weight of fitness deviation governs strict physical chaos in replicator dynamics". In: Chaos: An Interdisciplinary Journal of Nonlinear Science 28.3 (2018), p. 033104. Yuzuru Sato and James P Crutchfield. "Coupled replicator equations for the dynamics of learning in multiagent systems". In: Physical Review E 67.1 (2003), p. 015206. Reinhard Selten. Game Equilibrium Models I: Evolution and Game Dynamics. 1st ed. Springer-Verlag Berlin Heidelberg, 1991.

Karl Sigmund. Introduction to Evolutionary Game Theory. University of Vienna. 2011.

1

- Peter D Taylor and Leo B Jonker. "Evolutionary stable strategies and game dynamics". In: *Mathematical biosciences* 40.1-2 (1978), pp. 145–156.
 - Izu Vaisman. *Lectures on the Geometry of Poisson Manifolds*. 1st ed. Progress in Mathematics 118. Birkhäuser Basel, 1994.

Thanks