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A fundamental question in multi-agent
learning theory is whether players even-
tually learn to emulate rational behavior
through repeated interactions, while min-
imizing their incurred regret [6, 18].

This question finds positive answer for the
class of potential games [14], in which the
players’ common strategic interests give
rise to a wide range of equilibrium con-
vergence results under no-regret learning
dynamics [7, 9]. By contrast, in harmonic
games [5] – the strategic counterpart of po-
tential games, where players have conflict-
ing interests – very little is known out-
side the narrow subclass of 2-player zero-
sum games with a fully-mixed equilib-
rium [12].

In light of this, our objectives are to 1. de-
rive a dynamics-driven decomposition of a
game into a potential and a harmonic
component, and 2. examine the con-
vergence properties of follow-the-regular-
ized-leader (FTRL), the most widely stud-
ied class of no-regret learning schemes, in
harmonic games.

We focus initially on finite games under
the replicator dynamics (RD) of Taylor and
Jonker [19], a continuous-time instance of
the FTRL class with particularly appeal-
ing geometrical properties. Our starting
point is Hodge-Helmholtz’s theorem [4],
which resolves a vector field into a po-
tential and an incompressible component,
encapsulating respectively the convergent
and the non-convergent parts of the in-
duced dynamical system. However, as we
show in [11], the geometry of RD is in-
compatible with the Euclidean metric un-
derpinning Helmholtz’s theorem, making
it necessary to consider an alternative Rie-
mannian structure on the game’s strategy
space based on the so-called Shahshahani
metric [2, 17]. In the spirit of Hodge’s
theorem, we then introduce the class of
Shahshahani-incompressible games – those
with vanishing Shahshahani divergence –
as the opposite pole of potential games
from a dynamical standpoint.

As a first result, we show that a game is
Shahshahani-incompressible if and only if
it is harmonic, thus establish a deep con-
nection with a well-known decomposition
for finite games into a potential and a har-
monic component based on the combina-
torial version of Hodge’s theorem [5, 8].
Furthermore, we show that the RD on in-
compressible games admit a constant of
motion and are volume preserving with
respect to the Shahshahani metric, imply-
ing in turn that the replicator dynamics in
harmonic games are Poincaré recurrent –
that is, they return arbitrarily close to their
starting point infinitely often, and in par-
ticular fail to converge.

We then significantly broaden the spec-
trum of our investigation along two axes,
namely by 1. considering the class of
generalized finite harmonic games [1], and
2. considering the whole class of FTRL dy-
namics, in continuous as well as discrete
time. In this more general setting, we
show that Poincaré recurrence persists un-
der continuous time FTRL dynamics – in-
cluding in particular RD as a special case.
In discrete time, the standard implemen-
tation of FTRL may lead to even worse
outcomes, spiraling towards the boundary
of the game’s strategy space and eventu-
ally trapping the players in a perpetual cy-
cle of best-responses. However, if FTRL
is augmented with a suitable extrapola-
tion step – which includes as special cases
the optimistic and mirror-prox variants of
FTRL [13, 15] – we show that learning con-
verges to a Nash equilibrium from any ini-
tial condition, and all players are guaran-
teed at most O(1) regret.

Finally, as part of ongoing work, we aim
at leveraging Hodge’s decomposition the-
orem for differential forms on Rieman-
nian manifolds [20] to derive a dynamics-
motivated decomposition of games with
continuous action sets [16]; the primary
challenge in this direction is that of con-
structing a suitable family of isometries
for the Hessian-Riemannian metrics that
underpin the FTRL dynamics [3, 10].



Since the seminal work of Candogan et al.
[5], except for certain very special cases,
learning dynamics in harmonic games
had not been understood. This work pro-
vides an in-depth understanding of no-
regret learning in harmonic games, nest-
ing prior results on 2-player zero-sum

games, and showing that potential and
harmonic games are complementary to
each other – not only from a strategic,
but also from a dynamic viewpoint – and
thereby significantly advancing a long-
standing question in the field.
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