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Idea

• The replicator dynamical system models the evolution of
the aggregate behavior of individuals in a population.

• This system is Hamiltonian in the appropriate geometrical
framework.

• Find periodic time evolutions with prescribed energy using
the convexity of the Hamiltonian.
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Dynamical system on categorical probability distributions1

• Discrete alphabet S(n+ 1) ∋ i
• p ∈ P(S(n+ 1)) = ∆n, p 7→ x : xi = p(i)

x ∈ ∆n ⊂ Rn+1 = {x ∈ Rn+1 :
∑
i
xi = 1, xi ≥ 0}

Figure 1: Space of PDs x = (xhead, xtail)

ẋ(t) = Xrep (x(t))

Leaves interior ∆̊n invariant

1Har09, p. 4. 2
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Replicator dynamical system - Population Dynamics2

• Population composed of n+ 1 types or species
• The fitness or growth rate of each species F : Rn+1+ → Rn+1

depends on the composition of the whole population

Ṗi(t) = Pi(t) Fi (P(t)) , P ∈ Rn+1+

• Descend from Rn+1+ through a normalization map onto the
simplex to the replicator equation, i.e. look at PD x ∈ ∆n

on the set of species, with xi = Pi∑
j Pj

ẋi = xi
(
fi(x)−

∑
h
xhfh(x)

)
, fh(x) = Fh(P)

2HS88, p. 67; San10, p. 160.
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Replicator dynamical system - Evolutionary Game Theory3

Population game (S(n+ 1), f ): strategically interacting agents

• Agents choose a pure strategy from a finite set S(n+ 1)
• The payoff of each pure strategy f : ∆n → Rn+1 depends
on current population state x ∈ P (S(n+ 1)) = ∆n

Mean dynamics via revision protocol ρ : ∆n → R(n+1)×(n+1)
+

ẋi =

∑
j
xj ρji(x)

−

xi∑
j
ρij(x)


ρij(x) = xj

(
fj(x)− fi(x)

)
+

[Imitation]

3San10, p. 126.
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Replicator dynamical system - Information geometry4

Riemannian game = P.G. with Riemannian metric on P(S(n+ 1))

• Gain G(x, v) =
∑

i fi(x) vi, v ∈ Tx∆, f payoff
• Cost C(x, v) = 1

2 ∥v∥
2
x

ẋ = arg maxv∈Tx∆ (G(x, v)− C(x, v))

• Replicator with Fisher-Shahshahani metric gij(x) = δij / xi

• Replicator fields ⊃ Fisher gradients
• E.g. linear symmetric payoff replicator field
• Wright and Fisher, classical population genetics

4MS18; Har09.
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Zero-sum replicator systems

• Average payoff vanishes identically
∑

i xi fi(x) ≡ 0
• E.g. linear anti-symmetric payoff fi(x) = Aij xj, A+ AT = 0

ẋi = xi
(
fi(x)−

∑
h
xhfh(x)

)
= xi fi(x)

• Extensively studied in classical GT5

• Very restrictive assumption for real life applications
• Discrete zero-sum replicator: model for gene conversion6

• Interesting in its own right for Hamiltonian character

5Sig11, p. 4.
6Nag83b; Nag83a.

6



Zero-sum replicator systems

• Average payoff vanishes identically
∑

i xi fi(x) ≡ 0
• E.g. linear anti-symmetric payoff fi(x) = Aij xj, A+ AT = 0
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Poisson structure on a space M

• General framework: stratified space M

{·, ·} : C∞(M)× C∞(M) → C∞(M) [A.S., Leibnitz, Jacobi]
{f,g} = {xi, xj} ∂if ∂jg = πij ∂if ∂jg

• π:
(2
0
)
tensor-field [Anti-symmetric, Jacobi]

• Hamiltonian vector fields and dynamical systems

XH = π(dH, ·) XiH = πhi ∂hH
ẋ = XH(x) ẋi = {H, xi}
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Poisson structure on a space M - degeneracy

• π, and equivalently {·, ·}, can be degenerate
• No restriction on the dimension of M

M = R3, {xi, xj} =

 0 1 A
−1 0 B
−A −B 0



• Casimir f(x) = Bx1 − Ax2 + x3, namely {f, ·} ≡ 0
• Change coordinates to isolate degeneracy

y1 = x1, y2 = x2, y3 = Bx1 − Ax2 + x3

{y3, ·} ≡ 0

8



Poisson structure on a space M - degeneracy

• π, and equivalently {·, ·}, can be degenerate
• No restriction on the dimension of M

M = R3, {xi, xj} =

 0 1 A
−1 0 B
−A −B 0



• Casimir f(x) = Bx1 − Ax2 + x3, namely {f, ·} ≡ 0
• Change coordinates to isolate degeneracy

y1 = x1, y2 = x2, y3 = Bx1 − Ax2 + x3

{y3, ·} ≡ 0

8



Stratified Poisson structure for the standard simplex7

0 2 “3”1

Figure 2: Simplices representable in three dimensions. Each face is a Poisson manifold.

Poisson structure on ∆n with A anti-symmetric (n+ 1) matrix

{xi, xj}A = xixj
(∑

h
(Aih + Ahj)xh − Aij

)
7Regular and Singular Poisson Reduction Theorems [OR04, p. 364] [ORF09, p. 1273]
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Interior Hamiltonian dynamics of zero-sum replicator

• Interior fixpoint q ∈ ∆̊n

• Hq(x) = DKL(q∥x) =
∑

i qi log
qi
xi Relative entropy

• Provides the Fisher metric
• Appears in EGT as Lyapunov function given ESS strategy

Theorem
Consider a replicator dynamical system with anti-symmetric
payoff matrix A. If a fixpoint q exists in ∆̊n, then the system is
Hamiltonian w.r.t. {xi, xj}A, with Hq(x) as Hamiltonian function8.

8AD14.
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Interior Hamiltonian dynamics of zero-sum replicator

• Interior trajectories do not converge to the boundary nor
to a fixpoint

• Bounded orbits, periodic or not?

11



Interior Hamiltonian dynamics of zero-sum replicator

Figure 3: Three periodic orbits around the fixpoint. 12



Interior Hamiltonian dynamics of zero-sum replicator

Figure 4: One periodic orbit. The time average converges to the fixpoint. 13



Interior Hamiltonian dynamics of zero-sum replicator

Figure 5: Non periodic bounded orbits
14
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