Zero-sum evolutionary games and convex Hamiltonian systems

FOUNDATIONS

Gabriele Benedetti & Davide Legacci Presentation of the EP 3.2 STRUCTURES Jour Fixe – November 20, 2020

- The replicator dynamical system models the evolution of the aggregate behavior of individuals in a population.
- This system is Hamiltonian in the appropriate geometrical

• Find periodic time evolutions with prescribed energy using the convexity of the Hamiltonian.

- The replicator dynamical system models the evolution of the aggregate behavior of individuals in a population.
- This system is Hamiltonian in the appropriate geometrical framework.

• Find periodic time evolutions with prescribed energy using the convexity of the Hamiltonian.

- The replicator dynamical system models the evolution of the aggregate behavior of individuals in a population.
- This system is Hamiltonian in the appropriate geometrical framework.

• Find periodic time evolutions with prescribed energy using the convexity of the Hamiltonian.

Dynamical system on categorical probability distributions¹

• Discrete alphabet $S(n + 1) \ni i$

$$
\cdot p \in P(S(n+1)) = \Delta^n, \quad p \mapsto x : x^i = p(i)
$$

$$
x \in \Delta^n \subset \mathbb{R}^{n+1} = \{x \in \mathbb{R}^{n+1} : \sum_i x^i = 1, x^i \ge 0\}
$$

Dynamical system on categorical probability distributions¹

• Discrete alphabet $S(n + 1) \ni i$

$$
\cdot p \in P(S(n+1)) = \Delta^n, \quad p \mapsto x : x^i = p(i)
$$

$$
x \in \Delta^n \subset \mathbb{R}^{n+1} = \{x \in \mathbb{R}^{n+1} : \sum_i x^i = 1, x^i \ge 0\}
$$

Replicator dynamical system - Population Dynamics²

- \cdot Population composed of $n + 1$ types or species
- \cdot The fitness or growth rate of each species $F: \mathbb{R}^{n+1}_+ \to \mathbb{R}^{n+1}$ depends on the composition of the whole population

$$
\dot{P}_i(t) = P_i(t) F_i(P(t)), \quad P \in \mathbb{R}^{n+1}_+
$$

 \cdot Descend from \mathbb{R}^{n+1}_+ through a normalization map onto the simplex to the replicator equation, i.e. look at PD $x \in \Delta^n$ on the set of species, with $x^i = \frac{P_i}{\sum_i}$

$$
\dot{x}^{i} = x^{i} \left(f_{i}(x) - \sum_{h} x^{h} f_{h}(x) \right), \quad f_{h}(x) = F_{h}(P)
$$

²HS88, p. 67; San10, p. 160.

Replicator dynamical system - Population Dynamics²

- \cdot Population composed of $n + 1$ types or species
- \cdot The fitness or growth rate of each species $F: \mathbb{R}^{n+1}_+ \to \mathbb{R}^{n+1}$ depends on the composition of the whole population

$$
\dot{P}_i(t) = P_i(t) F_i(P(t)), \quad P \in \mathbb{R}^{n+1}_+
$$

 \cdot Descend from \mathbb{R}^{n+1}_+ through a normalization map onto the simplex to the replicator equation, i.e. look at PD $x \in \Delta^n$ on the set of species, with $x^i = \frac{P_i}{\sum_i}$ *j Pj*

$$
\dot{x}^i = x^i \left(f_i(x) - \sum_h x^h f_h(x) \right), \quad f_h(x) = F_h(P)
$$

²HS88, p. 67; San10, p. 160.

Replicator dynamical system - Population Dynamics²

- \cdot Population composed of $n + 1$ types or species
- \cdot The fitness or growth rate of each species $F: \mathbb{R}^{n+1}_+ \to \mathbb{R}^{n+1}$ depends on the composition of the whole population

$$
\dot{P}_i(t) = P_i(t) F_i(P(t)), \quad P \in \mathbb{R}^{n+1}_+
$$

 \cdot Descend from \mathbb{R}^{n+1}_+ through a normalization map onto the simplex to the replicator equation, i.e. look at PD $x \in \Delta^n$ on the set of species, with $x^i = \frac{P_i}{\sum_i}$ *j Pj*

$$
\dot{x}^i = x^i \left(f_i(x) - \sum_h x^h f_h(x) \right), \quad f_h(x) = F_h(P)
$$

²HS88, p. 67; San10, p. 160.

Replicator dynamical system - Evolutionary Game Theory³

Population game $(S(n + 1), f)$: strategically interacting agents

- Agents choose a pure strategy from a finite set $S(n + 1)$
- The payoff of each pure strategy *f* : ∆*ⁿ →* R *ⁿ*+¹ depends on current population state $x \in P(\mathcal{S}(n+1)) = \Delta^n$

Mean dynamics via *revision protocol* ρ : Δ ^{*n*} → ℝ $^{(n+1)\times (n+1)}$

$$
\dot{x}^i = \left(\sum_j x^j \rho_{ji}(x)\right) - \left(x^i \sum_j \rho_{ij}(x)\right)
$$

 $\rho_{ij}(x) = x^j \left(f_j(x) - f_i(x) \right)_+$ [Imitation]

3 San10, p. 126.

Replicator dynamical system - Evolutionary Game Theory³

Population game $(S(n + 1), f)$: strategically interacting agents

- \cdot Agents choose a pure strategy from a finite set $S(n + 1)$
- The payoff of each pure strategy *f* : ∆*ⁿ →* R *ⁿ*+¹ depends on current population state $x \in P(S(n + 1)) = \Delta^n$

Mean dynamics via *revision protocol* $ρ$: $Δⁿ → ℝ₊^{(n+1)×(n+1)}$

$$
\dot{x}^{i} = \left(\sum_{j} x^{j} \rho_{ji}(x)\right) - \left(x^{i} \sum_{j} \rho_{ij}(x)\right)
$$

 $\rho_{ij}(x) = x^j \left(f_j(x) - f_i(x) \right)_+$ [Imitation]

3 San10, p. 126.

Replicator dynamical system - Evolutionary Game Theory³

Population game $(S(n + 1), f)$: strategically interacting agents

- Agents choose a pure strategy from a finite set $S(n + 1)$
- The payoff of each pure strategy *f* : ∆*ⁿ →* R *ⁿ*+¹ depends on current population state $x \in P(\mathcal{S}(n+1)) = \Delta^n$

Mean dynamics via *revision protocol* $ρ$: $Δⁿ → ℝ₊^{(n+1)×(n+1)}$

$$
\dot{x}^{j} = \left(\sum_{j} x^{j} \rho_{ji}(x)\right) - \left(x^{j} \sum_{j} \rho_{ij}(x)\right)
$$

$$
\rho_{ij}(x) = x^j \left(f_j(x) - f_i(x) \right)_+ \quad \text{[Imitation]}
$$

3 San10, p. 126.

Replicator dynamical system - Information geometry⁴

Riemannian game = P.G. with Riemannian metric on $P(S(n+1))$

- Gain $G(x, v) = \sum_i f_i(x) v^i$, $v \in T_x \Delta$, f payoff
- Cost $C(x, v) = \frac{1}{2} ||v||_x^2$

 \dot{x} = arg max_{$v \in T_x \Delta$} (*G*(*x, v*) *− C*(*x, v*))

- \cdot Replicator with Fisher-Shahshahani metric $g_{ij}(x) = \delta_{ij}$ / x^i
- Replicator fields *⊃* Fisher gradients
	- E.g. linear symmetric payoff replicator field
	-

⁴MS18; Har09.

Replicator dynamical system - Information geometry⁴

Riemannian game = P.G. with Riemannian metric on $P(S(n+1))$

- Gain $G(x, v) = \sum_i f_i(x) v^i$, $v \in T_x \Delta$, f payoff
- Cost $C(x, v) = \frac{1}{2} ||v||_x^2$

 \dot{x} = arg max_{$v \in T_x \Delta$} ($G(x, v) - C(x, v)$)

- \cdot Replicator with Fisher-Shahshahani metric $g_{ij}(x) = \delta_{ij}/x^i$
- Replicator fields *⊃* Fisher gradients
	- E.g. linear symmetric payoff replicator field
	-

⁴MS18; Har09.

Replicator dynamical system - Information geometry⁴

Riemannian game = P.G. with Riemannian metric on $P(S(n+1))$

• Gain $G(x, v) = \sum_i f_i(x) v^i$, $v \in T_x \Delta$, f payoff

• Cost
$$
C(x, v) = \frac{1}{2} ||v||_x^2
$$

 \dot{x} = arg max_{$v \in T_x \Delta$} ($G(x, v) - C(x, v)$)

- \cdot Replicator with Fisher-Shahshahani metric $g_{ij}(x) = \delta_{ij}/x^i$
- Replicator fields *⊃* Fisher gradients
	- E.g. linear symmetric payoff replicator field
	- Wright and Fisher, classical population genetics

⁴MS18; Har09.

Zero-sum replicator systems

- Average payoff vanishes identically $\sum_i x^i f_i(x) \equiv 0$
- E.g. linear anti-symmetric payoff $f_i(x) = A_{ij} x^j$, $A + A^T = 0$

$$
\dot{x}^i = x^i \left(f_i(x) - \sum_h x^h f_h(x) \right) = x^i f_i(x)
$$

- \cdot Extensively studied in classical GT5
- Very restrictive assumption for real life applications
- *Discrete* zero-sum replicator: model for gene conversion⁶
- Interesting in its own right for Hamiltonian character

Zero-sum replicator systems

- Average payoff vanishes identically $\sum_i x^i f_i(x) \equiv 0$
- E.g. linear anti-symmetric payoff $f_i(x) = A_{ij} x^j$, $A + A^T = 0$

$$
\dot{x}^i = x^i \left(f_i(x) - \sum_h x^h f_h(x) \right) = x^i f_i(x)
$$

- \cdot Extensively studied in classical GT⁵
- Very restrictive assumption for real life applications
- *Discrete* zero-sum replicator: model for gene conversion⁶
- Interesting in its own right for Hamiltonian character

⁵ Sig11, p. 4. 6 Nag83b; Nag83a.

Poisson structure on a space *M*

• General framework: *stratified space M*

$$
\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M) \quad \text{[A.S., Leibnitz, Jacobi]}
$$

$$
\{f,g\} = \{x^i, x^j\} \partial_i f \partial_j g = \pi^{ij} \partial_i f \partial_j g
$$

- $π:$ $\binom{2}{0}$ $_0^2$) tensor-field [Anti-symmetric, Jacobi]
- Hamiltonian vector fields and dynamical systems

$$
X_H = \pi(dH, \cdot) \qquad X_H^i = \pi^{hi} \partial_h H
$$

$$
\dot{x} = X_H(x) \qquad \dot{x}^i = \{H, x^i\}
$$

Poisson structure on a space *M*

• General framework: *stratified space M*

{
$$
\cdot, \cdot
$$
} : $C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ [A.S., Leibnitz, Jacobi]
{ f, g } = { x^i, x^i } $\partial_i f \partial_j g = \pi^{ij} \partial_i f \partial_j g$

- $π:$ $\binom{2}{0}$ $_0^2$) tensor-field [Anti-symmetric, Jacobi]
- Hamiltonian vector fields and dynamical systems

$$
X_H = \pi(dH, \cdot) \qquad X_H^i = \pi^{hi} \partial_h H
$$

$$
\dot{x} = X_H(x) \qquad \dot{x}^i = \{H, x^i\}
$$

Poisson structure on a space *M* - degeneracy

- *π*, and equivalently *{·, ·}*, can be degenerate
- No restriction on the dimension of *M*

$$
M = \mathbb{R}^{3}, \{x^{i}, x^{j}\} = \begin{pmatrix} 0 & 1 & A \\ -1 & 0 & B \\ -A & -B & 0 \end{pmatrix}
$$

- Casimir *f*(*x*) = *Bx*¹ *− Ax*² + *x* 3 , namely *{f, ·} ≡* 0
- Change coordinates to isolate degeneracy

$$
y1 = x1, y2 = x2, y3 = Bx1 - Ax2 + x3
$$

$$
\{y3, \cdot\} \equiv 0
$$

Poisson structure on a space *M* - degeneracy

- *π*, and equivalently *{·, ·}*, can be degenerate
- No restriction on the dimension of *M*

$$
M = \mathbb{R}^{3}, \{x^{i}, x^{j}\} = \begin{pmatrix} 0 & 1 & A \\ -1 & 0 & B \\ -A & -B & 0 \end{pmatrix}
$$

- \cdot Casimir *f*(*x*) = *Bx*¹ − *Ax*² + *x*³, namely {*f*, \cdot } ≡ 0
- Change coordinates to isolate degeneracy

$$
y1 = x1, y2 = x2, y3 = Bx1 - Ax2 + x3
$$

$$
\{y3, \cdot\} \equiv 0
$$

Stratified Poisson structure for the standard simplex⁷

Figure 2: Simplices representable in three dimensions. Each face is a Poisson manifold.

Poisson structure on ∆*ⁿ* with *A* anti-symmetric (*n* + 1) matrix

$$
\{x^i, x^j\}_A = x^i x^j \left(\sum_h (A_{ih} + A_{hj}) x^h - A_{ij} \right)
$$

⁷Regular and Singular Poisson Reduction Theorems [OR04, p. 364] [ORF09, p. 1273]

- Interior fixpoint *q ∈* ∆˚*ⁿ*
- \cdot *H_q*(*x*) = *D_{KL}*(*q∥x*) = $\sum_i q^i \log \frac{q^i}{x^i}$ *x ⁱ* Relative entropy
	- Provides the Fisher metric
	- Appears in EGT as Lyapunov function given ESS strategy

Theorem

payoff matrix A. If a fixpoint q exists in ∆˚*ⁿ , then the system is*

- Interior fixpoint *q ∈* ∆˚*ⁿ*
- \cdot *H_q*(*x*) = *D_{KL}*(*q∥x*) = $\sum_i q^i \log \frac{q^i}{x^i}$ *x ⁱ* Relative entropy
	- Provides the Fisher metric
	- Appears in EGT as Lyapunov function given ESS strategy

Theorem

Consider a replicator dynamical system with anti-symmetric payoff matrix A. If a fixpoint q exists in ∆˚*ⁿ , then the system is* Hamiltonian w.r.t. $\{x^i, x^j\}$ _A, with H_q(x) as Hamiltonian function⁸.

⁸AD14.

- Interior trajectories do not converge to the boundary nor to a fixpoint
- Bounded orbits, periodic or not?

Figure 3: Three periodic orbits around the fixpoint. ¹²

Figure 4: One periodic orbit. The time average converges to the fixpoint. ¹³

Figure 5: Non periodic bounded orbits

References

F

Hassan Najafi Alishah and Pedro Duarte. "Hamiltonian evolutionary games". In: *arXiv preprint arXiv:1404.5900* (2014).

Ethan Akin and Viktor Losert. "Evolutionary dynamics of zero-sum games". In: *Journal of mathematical biology* 20.3 (1984), pp. 231–258.

Marc Harper. "Information geometry and evolutionary game theory". In: *arXiv preprint arXiv:0911.1383* (2009).

Josef Hofbauer and Karl Sigmund. The Theory of Evolution and Dynamical *Systems: Mathematical Aspects of Selection*. London Mathematical Society Student Texts. Cambridge University Press, 1988.

Panayotis Mertikopoulos and William H Sandholm. "Riemannian game dynamics". In: *Journal of Economic Theory* 177 (2018), pp. 315–364.

Thanks