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- The replicator dynamical system models the evolution of
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- The replicator dynamical system models the evolution of
the aggregate behavior of individuals in a population.

- This system is Hamiltonian in the appropriate geometrical
framework.

- Find periodic time evolutions with prescribed energy using
the convexity of the Hamiltonian.



Dynamical system on categorical probability distributions'

- Discrete alphabet S(n+1) > i
- pePS(n+1)=A" prx:x=p(i)

I

e Fair coin
e Weighted coin

X(t) = Xrep (x(1))
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Figure 1: Space of PDS X = (Xheads Xtail)
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Dynamical system on categorical probability distributions'

- Discrete alphabet S(n+1) > i
- pePS(n+1)=A" prx:x=p(i)

I

e Fair coin
e Weighted coin

X(t) = Xrep (x(1))

Leaves interior A" invariant
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Figure 1: Space of PDS X = (Xheads Xtail)

THaro9, p. 4.



Replicator dynamical system - Population Dynamics?

- Population composed of n + 1 types or species
- The fitness or growth rate of each species F: R — R
depends on the composition of the whole population

Pi(t) = Pi(t)Fi (P(t)), PeRY

2Hs88, p. 67; San10, p. 160.
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- Population composed of n + 1 types or species
- The fitness or growth rate of each species F: R — R
depends on the composition of the whole population

Pi(t) = Pi(t)Fi (P(t)), PeRY

- Descend from R+ through a normalization map onto the

simplex to the replicator equation, i.e. look at PD x € A"

i ' i_ _Pi
on the set of species, with x' = =

X=X (f,-(x) - Zx“fh(x)> » fa(¥) = Fa(P)
h

2Hs88, p. 67; San10, p. 160.



Replicator dynamical system - Evolutionary Game Theory?

Population game (S(n + 1),f): strategically interacting agents

- Agents choose a pure strategy from a finite set S(n + 1)

- The payoff of each pure strategy f: A" — R"+' depends
on current population state x € P(S(n+ 1)) = A"

3san10, p. 126.
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Population game (S(n + 1),f): strategically interacting agents

- Agents choose a pure strategy from a finite set S(n + 1)

- The payoff of each pure strategy f: A" — R"+' depends
on current population state x € P(S(n+ 1)) = A"

Mean dynamics via revision protocol p : A" — R&”H)X(”“)

X = (ZX’ pﬂ(X)) - (X'ZPU(X))
J J

pi(X) = ¥ (f](X) _f,-(x))+ [Imitation]

3san10, p. 126.



Replicator dynamical system - Information geometry*

Riemannian game = P.G. with Riemannian metric on P(S(n+1))

- Gain G(x,v) = 3, fix)V, veTA, fpayoff

« Cost C(x,v) = 1 |Iv|12

X = arg max,er a (G(x,v) — C(x,V))

4MS18; Har09.
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Replicator dynamical system - Information geometry*

Riemannian game = P.G. with Riemannian metric on P(S(n+1))

- Gain G(x,v) = 3, fix)V, veTA, fpayoff

« Cost C(x,v) = 1 |Iv|12

X = arg max,er a (G(x,v) — C(x,V))

- Replicator with Fisher-Shahshahani metric g;(x) = &; /X
- Replicator fields D Fisher gradients

- E.g. linear symmetric payoff replicator field
- Wright and Fisher, classical population genetics

4MS18; Har09.



Zero-sum replicator systems

- Average payoff vanishes identically Zix’]‘,(x) =0
- Eg linear anti-symmetric payoff fi(x) = Aj X, A+AT=0

X=X ( thfh ) = X fi(x)




Zero-sum replicator systems

- Average payoff vanishes identically Zix’]‘,(x) =0
- Eg linear anti-symmetric payoff fi(x) = Aj X, A+AT=0

X=X (ﬁ(x) - thfh(x)> =X fi(x)
h

- Extensively studied in classical GT°
- Very restrictive assumption for real life applications
- Discrete zero-sum replicator: model for gene conversion®

- Interesting in its own right for Hamiltonian character

5Sigl, p. 4.
Nag83b; Nags83a.



Poisson structure on a space M

- General framework: stratified space M

[} C(M) x C°(M) — C°(M) [AS, Leibnitz, Jacobi]
{f.g} = (X, ¥} af 0,9 =« 9fd,g

- ((2)) tensor-field [Anti-symmetric, Jacobi]



Poisson structure on a space M

- General framework: stratified space M
{-,-}: C°(M) x C®°(M) — C*(M) [AS, Leibnitz, Jacobi]
{f.a} = (X, ¥} af g = = 9f 99
- ((2)) tensor-field [Anti-symmetric, Jacobi]
- Hamiltonian vector fields and dynamical systems
Xy =m(dH,) Xy =" 8,H
X=Xy(x) X ={H,x}
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- 7, and equivalently {-, -}, can be degenerate

- No restriction on the dimension of M



Poisson structure on a space M - degeneracy

- 7, and equivalently {-, -}, can be degenerate

- No restriction on the dimension of M

0o 1 A
M=R}{x¥}=]-1 0 B
~A -B 0

- Casimir f(x) = Bx' — Ax* +x3, namely {f,-} =0
- Change coordinates to isolate degeneracy

Y =X 2 =527 = B — A+ X
{’,-}=0



tified Poisson structure for the standard simplex’

Figure 2: Simplices representable in three dimensions. Each face is a Poisson manifold.

Poisson structure on A" with A anti-symmetric (n 4+ 1) matrix

(X X3 =X D (Ain + An)X" — Ay
h

7Regular and Singular Poisson Reduction Theorems [OR04, p. 364] [ORF09, p. 1273]



Interior Hamiltonian dynamics of zero-sum replicator

- Interior fixpoint g € A"
* Hq(x) = Dre(q]l¥) = 32 ' log% Relative entropy
- Provides the Fisher metric
- Appears in EGT as Lyapunov function given ESS strategy

10



Interior Hamiltonian dynamics of zero-sum replicator

- Interior fixpoint g € A"

* Hq(x) = Dre(q]l¥) = 32 ' log% Relative entropy
- Provides the Fisher metric
- Appears in EGT as Lyapunov function given ESS strategy

Theorem

Consider a replicator dynamical system with anti-symmetric
payoff matrix A. If a fixpoint q exists in A", then the system is
Hamiltonian w.rt. {x', X}, with Hq(x) as Hamiltonian function®.

8AD14,

10



Interior Hamiltonian dynamics of zero-sum replicator

- Interior trajectories do not converge to the boundary nor
to a fixpoint

- Bounded orbits, periodic or not?

n



Interior Hamiltonian dynamics of zero-sum replicator

Type: 2D Zero sum Hamiltonian, [0 1-2-1 0 3 2-3 0]
2

— flow
— flow
— flow

0 1

Figure 3: Three periodic orbits around the fixpoint.



Interior Hamiltonian dynamics of zero-sum replicator

Type: 2D Zero sum Hamiltonian, [0 1-2-1 0 3 2-3 0]
2

— flow
time average

0 1

Figure 4: One periodic orbit. The time average converges to the fixpoint. 13



Interior Hamiltonian dynamics of zero-sum replicator

Zero-sum interior Hamiltonian dynamics in population space (change of coordinates introduced in next part)

num. species = 4, proj. = [1 2 3] proj. = [12 4]
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