A Geometric Approach to Game Dynamics What is the Geometric Obstacle to Convergence?

Davide Legacci, Panayotis Mertikopoulos, Bary Pradelski

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France

June 2023

An image from physics

- o Converging
- Rotation-free
- Scalar potential $E = \nabla f$

The flows of...

- Conservative
- Divergence-free
- Vector potential $B = \nabla \times A$

An image from game theory Replicator dynamics in...

A potential game

- o Converging
- Rotation-free dv = 0
- Scalar potential v = df

- o Conservative
- Divergence-free $\delta v = 0$
- Tensor potential $v = \delta A$

An image from game theory

- Converging
- Rotation-free dv = 0
- Scalar potential v = df

Payoff Hodge decomposition $v = df + \delta A$

Co-exactness* is the obstacle to convergence

Replicator dynamics in... A generic game

A <u>co-exact</u> game*

- Conservative
- Divergence-free $\delta v = 0$
- **Tensor** potential $v = \delta A$

 $*\delta$ = Shahshahani co-differential #AMA in the poster session

