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Mission

Goal

• Identify classes of games with distinctive strategic and
dynamical properties

Plan

• Represent a finite normal form game as a graph
• Use this representation to understand the decomposition
the space of games into three components

• Study the properties of these components

Starting point

• Candogan et al. 2011
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The Response Graph of a Normal
Form Game



Definitions

A normal form game is a tuple Γ = (N ,A,u) where

• N = {1, 2, . . . ,N} is the set of players
• Each player i ∈ N has a set of pure strategies

Ai = {1, 2, . . . , Ai}

• A =
∏
i∈N Ai is the set of pure strategy profiles

• Each player has an individual utility function

ui : A → R, a 7→ ui(a)

• The utility map of the game is

u : A → RN, a 7→ (u1, . . . ,uN)(a)
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Definitions

Given the normal form game Γ = (N ,A,u)

• The number of players is

N = |N |

• The number of pure strategies of player i ∈ N is

Ai = |Ai|

• The number of pure strategies profiles is

A = |A| =
∏
i∈N

Ai

⇒ the number of utilities is AN
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Example - 2× 3 normal form game

• N = {1, 2}
• A1 = {1, 2}, A2 = {1, 2, 3}
• A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}
• AN = 12

u : A → R2

(1, 1) 7−→ (−3, 3)
(1, 2) 7−→ (0,−5)
(1, 3) 7−→ (−3, 3)
(2, 1) 7−→ (3, 0)
(2, 2) 7−→ (−3, 0)
(2, 3) 7−→ (0, 1)

bimatrix notation←→

(
−3, 3 0,−5 −3, 3
3, 0 −3, 0 0, 1

)

5



Vector Space of Utilities

Given a set of players N and a set of pure strategy profiles A

• A utility map u : A → RN is the assignment of N numbers
to each of the A strategy profiles

• Denote the space of utilities by U
• U is an AN-dimensional vector space

Example - 2× 3 game

u =


u1(1, 1)
u1(1, 2)

...
u2(2, 2)
u2(2, 3)

 ∈ U , dim U = 12
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Response Graph

Let’s build a graph from a normal form game (N ,A, ·)

• Draw a node for each pure strategy profile in A
• Draw an edge between strategy profiles that differ only in
the strategy of one player

11 12 13

21 22 23

7



Edges, Unilateral Deviations, Actor

• Pairs of strategy profiles a ∈ A,b ∈ A that differ only in
the strategy of one player are called unilateral deviations

• Their space - that is the space of edges of the response
graph - is denoted by E

E = |E| = A
2
∑
i∈N

(Ai − 1)

• For each edge, the player who is deviating is called the
actor of the deviation

act : E → N
(ab) 7−→ i such that ai 6= bi

8



Example 2× 3 - Edges, Unilateral Deviations, Actor

11 12 13

21 22 23

act(blue edges) = 1

act(red edges) = 2
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Utilities, Flows, and Deviations

We built the response graph just with (N ,A, ·).

Let’s now add the utilities to the picture.

Goal - build

Deviation Map : Utilities Space→ Flows Space
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Recall - Vector Space of Utilities

• A utility u : A → RN is the assignment of N numbers to
each of the A nodes of the response graph

• Denote the space of utilities by U
• U is an AN-dimensional vector space

11
-3,3

12
0,-5

13
-3,3

21
3,0

22

-3,0

23
0,1
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Vector Space of Flows

• A flow X : E → R is the assignment of one number to each
of the E edges of the response graph

• Denote the space of flows by F
• F is an E-dimensional vector space

11 12 13

21 22 23

12 −18

11

0 8

6

−4 0 0
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Build a special flow for the normal form game (N ,A,u)

• Assign to each edge the actor’s utilities difference
• Call this flow deviation flow of the game

11
-3,3

12
0,-5

13
-3,3

21
3,0

22

-3,0

23
0,1

8 8

0

0 1

1

6 3 3

• We assign the number
ui(b)− ui(a) with i = act(ab)
to the edge a→ b

• Always choose the
orientation such that this
number is ≥ 0

• If an arrow leaves a node a
player following the arrow
does not lose
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The Deviation Map

• Take a normal form game (N ,A,u)
• U is the utilities vector space
• F is the flows vector space
• Map the utility of the game to its deviation flow

Definition

D :U → F
u 7−→ Du

such that
Du : E → R

(ab) 7−→ ui(b)− ui(a)

for i = act(ab)

(DM)

This map is linear, and is called deviation map.
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Why the deviation map D : U → F is useful

The deviation flow of a game Du captures its strategic structure

• Loosely speaking, the strategic structure of a game is the
orientation of the edges of its response graph

• It captures the interest of each player at each state
(strategy profile) of the game

• Games with different utilities u,u′ may have the same
strategic structure

• This happens in particular if they have the same deviation
flow, that is if Du = Du′
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Example - Pure Nash Equilibrium (NE)

A Pure Nash Equilibrium for a game (N ,A,u) is a strategy
profile a ∈ A such that

ui(a) ≥ ui(b) for all b ∈ A such that (ab) ∈ Ei, for all i ∈ N

The deviation flow Du fully determines the set of NE

Du(ba) ≥ 0 for all b ∈ A such that (ab) ∈ E

11
-3,3

12
0,-5

13
-3,3

21
3,0

22

-3,0

23
0,1

8 8

0

0 1

1

6 3 3
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Utility Space Decomposition



Utilities Space Decomposition

Goal - Introduce the decomposition of the utilities space U
into the three components

U = K ⊕ P ⊕H

These components are determined by deviation flows:

K,P,H = {u ∈ U : Du fulfills some property}

and are easy to visualize on a response graph.

1. Definition of the components
2. Statement of the decomposition theorem
3. Sketch one crucial step of the proof (original)
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Non-Strategic Component K

Definition
The non-strategic component of U is the subspace of utilities
with vanishing deviation flow

K := {u ∈ U : Du = 0} (K)

11
0, 1/3

12
-3/2, 1/3

13
-3/2, 1/3

21
0, 1/3

22

-3/2, 1/3

23
-3/2, 1/3

0 0

0

0 0

0

0 0 0

18



Why “Non-Strategic”?

• A game (N ,A,u) with u ∈ K ⊆ U is called non-strategic
• The deviation flow of a non-strategic game is identically
zero

In a non-strategic game all players are indifferent between all
of their strategies since no deviation will lead to any gain

11
0, 1/3

12
-3/2, 1/3

13
-3/2, 1/3

21
0, 1/3

22

-3/2, 1/3

23
-3/2, 1/3

0 0

0

0 0

0

0 0 0
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Recall - Complement and Direct Sum

A complement S of a subspace S ⊆ V is a subspace S of V s.t.

• Any v ∈ V can be written as the sum of some s ∈ S and s ∈ S

v = s+ s̄

• S ∩ S = {0}

If S is a complement of S we say that S and S are in direct sum:

S⊕ S = V

Any S ⊆ V admits a complement, that in general is not unique

20

https://www.geogebra.org/m/q34jvamw


Choose a Complement of the Non-Strategic Component

A Normalization is a choice of a complement K

By definition
U = K ⊕K

Recall - Given a utility u, its deviation flow Du captures its
strategic structure.

If u ∈ U then u = uK + u for some uK ∈ K and u ∈ U. So

Du = DuK + Du = Du

By looking at the normalized component of the utility function
we retain all of the strategic structure of the game.
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Potential Games

A normal form game (N ,A,u) is called potential if there exists
a function ϕ : A → R such that the deviation flow Du is

Du(ab) = ϕ(b)− ϕ(a) for each (ab) ∈ E (potential)

11
[0.3](-0.9, 1.3)

12
[-4.3](-1.5, -3.3)

13
[1.1](-0.6, 2.1)

21
[2.1](0.9, 1.1)

22

[-1.3](1.5, -2.3)

23 [2.3](0.6, 1.3)

4.6 5.4

0.8

3.4 3.6

0.2

1.8 3 1.2
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Harmonic Games

A normal form game (N ,A,u) is called harmonic if the net
deviation flow at each node of the response graph is zero:∑

b:(ab)∈E
Du(ab) = 0 for each a ∈ A (harmonic)

11
10, -3

12

-1, 1

13
-9, 3

21
0, 3

22

1, -1

23
-1, -3

4 2

6

4 2

6

10 2 8

• May know the graph Laplacian
∆0 = degree M.− adjacency M.

• Generalize to vector graph
Laplacian ∆1 : F → F

• Harmonic flows annihilate ∆1

• Inner product dependent -
Euclidean

• Good introduction: Lim 2020
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Normalization: P and H

A generic potential/harmonic game is not normalized, i.e.
given a potential/harmonic game nothing forbids that Du = 0

Definition
P is the subspace of normalized potential games

P := {u ∈ U : u is potential} ∩ K (P)

Definition
H is the subspace of normalized harmonic games

H := {u ∈ U : u is harmonic} ∩ K (H)

Visualize it! 24
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U = K ⊕ P ⊕H

Theorem (Candogan et al. 2011)
Fixed N , A, and a choice of normalization K̄, the space of
utilities U decomposes uniquely as

U = K ⊕ P ⊕H

Any game (N ,A,u) admits a unique decomposition into

• A non-strategic game (N ,A,uK)
• A normalized potential game (N ,A,uP)
• A normalized harmonic game (N ,A,uH)

with
u = uK + uP + uH
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Hand-wavy Explanation: Helmholtz Decomposition

Any “regular” vector field in three dimensions can be
decomposed into the sum of

• a gradient field, that is curl-free (or irrotational)
• a curl field, that is divergence-free (or solenoidal)

X⃗ = ∇⃗ϕ+ ∇⃗×A⃗

(E.g. electromagnetic field)

This is analogue to the decomposition of the normalized utility
into potential and harmonic components:

• gradient field ∼ potential component
• divergence-free field ∼ harmonic component
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Our First Result: Alternative Proof

• The proof by Candogan et al. 2011 heavily relies on an
explicit choice of normalization

• We developed a proof that does not depend on such
choice

1. U = K ⊕K ∼= K ⊕ ImD - standard
2. ImD ∼= Imd0 ⊕ ImD/Im d0 - standard
3. ImD = ker d1 - nontrivial, original
4. ker d1/Im d0

∼= ker∆1 - Hodge theorem

U ∼= K ⊕ Imd0 ⊕ ker∆1 (1)
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3. Deviation flows are precisely closed: X(ab)+X(bc)+X(ca) = 0

ImD ⊆ ker d1

1
a

2 b

3
c

b− a

c− ba− c

(d1Du)(abc) =
= Du(ab) + Du(bc) + Du(ca)
= b− a+ c− b+ a− c = 0

ImD ⊇ ker d1

1
0

2 A

3
A+ B

A

B−A− B

0 = (d1X)(abc) =
= X(ab) + X(bc) + X(ca)
⇒ ∃u : Du = X

Higher order: response graph factorization and Poincarè lemma
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Properties of the Components



Harmonic Games and Pure Nash

Theorem (Candogan et al. 2011)
Harmonic games generically do not have pure NE.

Intuition.
The net flow at each node is zero, so generically no node has
only incoming arrows.

11
10, -3

12
-1, 1

13
-9, 3

21
0, 3

22

1, -1

23
-1, -3

4 2

6

4 2

6

10 2 8
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Harmonic Games and Mixed Nash

Theorem (Candogan et al. 2011)
Harmonic normal form games always admit the uniformly
mixed strategy profile as mixed NE.

11
10, -3

12

-1, 1

13
-9, 3

21
0, 3

22

1, -1

23
-1, -3

4 2

6

4 2

6

10 2 8

x∗ =

(
1
2 ,
1
2

)
×
(
1
3 ,
1
3 ,
1
3

)

Matching Pennies

111,-1 12 -1,1

21-1,1 22 1,-1

2

2

2 2

x∗ =
(
1
2 ,
1
2

)
×
(
1
2 ,
1
2

)
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Our Second Result: Harmonic Games and Mixed Nash Revisited

• The proof by Candogan et al. 2011 relies on the use of the
Euclidean inner product

• We generalized the notion of harmonic games considering
non-Euclidean inner products

Work result A 2x2 strategic normal form game that is harmonic
with respect to a diagonal inner product admits a fully mixed
NE that depends only on the inner product, and not on utilities.

114.3,-1.5 12 -7.2,1

211,3 22 -3,-2

2.5

5

3.3 4.2

11-1.7,0.5 12 1.8,0

21-1,-2 22 1,-1

0.5

1

0.7 0.8

x∗ =

(
2
3 ,
1
3

)
× (0.56, 0.44) 31



Time Check

• Properties of Non-Strategic and Potential Games

• Conclusions
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Non-Strategic Component: Pareto Efficiency

A pure strategy profile a ∈ A is Pareto efficient if it is
impossible to make one player better off without making
another player worse off.

a ∈ A is PO ⇐⇒ ∄b ∈ A :

ui(b) ≥ ui(a) for all i ∈ N
uj(b) > uj(a) for some j ∈ N

CC2,2 CD 0,3

DC3,0 DD 1,1

1

1

1

1
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The Non-Strategic Component Affects Efficiency

• Consider two games whose difference is non-strategic:

u− v ∈ K ⇔ Du = Dv same strategic structure

• What changes is the equilibria efficiency

Theorem (Candogan et al. 2011)
For any normal form game (N ,A,u) there exists a normal form
game (N ,A, v) such that

• The difference between u and v is non-strategic
• The sets of pure Nash equilibria and of Pareto efficient
strategies of (N ,A, v) coincide
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Example - Prisoner’s Dilemma u = uK + uP + uH

CC[0](2,2) CD [1](0,3)

DC[1](3,0) DD [2](1,1)

1

1

1 1

CC[-1](-0.5,-0.5) CD [0](-0.5,0.5)

DC[0](0.5,-0.5) DD [1](0.5,0.5)

1

1

1 1

CC2.5,2.5 CD 0.5,2.5

DC2.5,0.5 DD 0.5,0.5

0

0

0 0

CC0,0 CD 0,0

DC0,0 DD 0,0

0

0

0 0
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Potential Games and Pure Nash

Theorem (Monderer and Shapley 1996)
Every potential normal form game has at leas one pure NE.

Proof.
The potential function ϕ : A → R always has a maximum in A,
so each argmax of ϕ is a pure Nash equilibrium.

11
[0.3](-0.9, 1.3)

12
[-4.3](-1.5, -3.3)

13
[1.1](-0.6, 2.1)

21
[2.1](0.9, 1.1)

22

[-1.3](1.5, -2.3)

23 [2.3](0.6, 1.3)

4.6 5.4

0.8

3.4 3.6

0.2

1.8 3 1.2
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Conclusions and Open Directions



Conclusions And Open Directions

Non-Strategic, Potential and Harmonic games display distinctive
properties that depend on some explicit choices.

Results so far

• Normalization-independent proof of decomposition theorem

• Result on mixed NE of non-Euclidean harmonic games

Research directions

• Dynamical (Balduzzi et al. 2018, Letcher et al. 2019)
• Behavior of player dynamics in harmonic games
• Decomposition of dynamics vector field

• Strategic (Abdou et al. 2020)
• Behavior of the decomposition under strategic
transformations
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Remark - The elephant in the room

I tried to describe the procedure
from a game theoretical point of
view.
The proof of the decomposition
theorem actually relies on the rich
machinery of simplicial
cohomology and combinatorial
Hodge theory.
If you’re curious, get in touch.

C0 C1 C2

C0 C1 C2

d0

∆1

d1

d∗0 d∗1g0 g1

∂1

g2

∂2

∆1 = d0 ◦ d∗0 + d∗1 ◦ d1

exact := Imd0

closed := ker d1

harmonic := ker∆1

C1 = Imd0 ⊕ Imd∗1 ⊕ ker∆1

= exact⊕ (closed)⊥ ⊕ harmonic
closed/exact ∼= harmonic 38



Thank You
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Our First Result: Alternative Proof

• The proof by Candogan et al. 2011 heavily relies on an explicit
choice of normalization

• We developed a proof that does not depend on such choice

1. U = K ⊕K ∼= K ⊕ ImD - standard

2. ImD ∼= Imd0 ⊕ Im D/Im d0 - standard

3. ImD = ker d1 - nontrivial, original

4. ker d1/Im d0
∼= ker∆1 - Hodge theorem

U ∼= K ⊕ Imd0 ⊕ ker∆1 (2)
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1. Proof of D : K ∼= ImD

D : K ∼= ImD

Let u, v ∈ K. If Du = Dv then u− v ∈ K ∩ K = {0}

Let w ∈ ImD. Then w = Du = D(u′ + k) = Du′ with u′ ∈ K, k ∈ K
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3. Proof of ImD = ker d1 - Step (i)

The fact that ImD ⊆ ker d1 is stated in Candogan et al. 2011, but it is
proved employing a relatively heavy machinery, while we developed
a simpler argument:

(d1Du) (abc) = Duab + Dubc + Duca
= ui(b)− ui(a) + uj(c)− uj(b) + uh(a)− uh(c)
= 0 since (abc) is a 3-clique⇒ i = j = h

This means that d1 ◦ D ≡ 0, i.e. every deviation flow is a closed flow.
Note that being a deviation flow is in spirit analogue to being exact,
since D is in spirit a generalization of d0.
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Visualize ImD ⊆ ker d1

The net flow over any 3-clique is zero

(d1Du)(abc) = Du(ab) + Du(bc) + Du(ca) = 0
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3. Proof of ImD = ker d1 - Step (ii)

The proof of the fact that ImD ⊇ ker d1 is, to our knowledge, original.
The statement is that every closed flow is the deviation flow of some
game.

Given a closed flow X we need to find a utility u such that Du = X.
The idea is to factorize the response graph into complete sub-graphs
that have a unique actor, and to decouple the system of equations
Du(ab) = X(ab) into sub-systems relative to these sub-graphs. With
this decomposition in place the problem is reduced to showing that
if X is closed than it is exact on each complete sub-graph. This is true
by Poincarè lemma since each complete sub-graph is contractible1.

1“3-cliques are full”: as a 2-dimensional simplicial complex, 3-cliques generate the
space of 2-chains.
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Proof sketch - Conclusion

1. U = K ⊕K ∼= K ⊕ ImD - standard

2. ImD ∼= Imd0 ⊕ Im D/Im d0 - standard

3. ImD = ker d1 - From previous slides

4. ker d1/Im d0
∼= ker∆1 - Hodge theorem

U ∼= K ⊕
potential︷ ︸︸ ︷
Imd0 ⊕

harmonic︷ ︸︸ ︷
ker∆1︸ ︷︷ ︸

Im D
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Drafts



11
-3, 3

12

0, -5

13
-3, 3

21
3, 0

22

-3, 0
23
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8 8

0

0 1

1

6 3 3

11
0, 0.3

12

-1.5, 0.3

13
-1.5, 0.3

21
0, 0.3
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0 0

0

0 0

0

0 0 0

11
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12
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13
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11
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12
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Mixed Extension of a Normal Form Game

A mixed strategy for player i ∈ N is a probability distribution over
the set of pure strategies Ai

for each i ∈ N , xi ∈ ∆(Ai) i.e.
{
xi,ai ≥ 0 ∀ai ∈ Ai∑

ai∈Ai
xi,ai = 1

The extended payoff of player i ∈ N is the expectation value of
ui : A → R with respect to the product probability distribution
Px : A → R induced by a mixed strategy profile (x1, . . . , xN):

ūi :
∏
i∈N

∆(Ai) −→ R

(x1, . . . , xN)︸ ︷︷ ︸
mixed strategy profile

7−→ Ea∼x[ui(a)] =
∑
a∈A

ui(a)
∏
j∈N

xj,aj︸ ︷︷ ︸
Px(a)
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Mixed Nash Equilibrium

Analogously to a pure NE, a Mixed Nash Equilibrium for the mixed
extension of a normal form game (N ,A, ū) is a mixed strategy profile
(x1, . . . , xN) at which no player has interest in making a mixed
unilateral deviation:

ūi(xi; x−i) ≥ ūi(yi; x−i) ∀ yi ∈ ∆(Ai), ∀ i ∈ N

Compare with the definition of pure NE:

ui(ai; a−i) ≥ ui(bi; a−i) ∀bi ∈ Ai, ∀ i ∈ N
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Vector Space of Individual Utilities

Given a set of players N and a set of pure strategy profiles A

• An individual utility ui : A → R is the assignment of one
number to each of the A strategy profiles

• Denote the space of individual utilities by V

• V is an A-dimensional vector space

Example - 2× 3 game: N = 2,A = 6

u1 =


u1(1, 1)
u1(1, 2)

...
u1(2, 2)
u1(2, 3)

 ∈ U , dim V = 6

The graph Laplacian acts on this space ∆0 : V → V ; this is C0 in
simplicial cohomology notation.
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