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Poisson geometry



Why?

• Dynamical system describing evolution of distribution of
frequencies

• Discrete probability distribution

x ∈ ∆n ⊂ Rn+1 = {x ∈ Rn+1 :
∑
i
xi = 1, xi ≥ 0} (1)

• No symplectic structure on odd faces
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Poisson algebra

(V, ◦, {·, ·}) vector space with two bilinear operations

• (V, K, ◦) associative algebra
• (V, K, {·, ·}) Lie algebra (a.s. and Jacobi)
• {·, ·} derivation with respect to ◦ in both arguments,
namely for any fixed u ∈ V the map {u, ·} : V→ V fulfills

{u,a ◦ b} = {u,a} ◦ b+ a ◦ {u,b} (2)

for any a,b ∈ V, and similarly for {·,u}.

The map {·, ·} is called Poisson bracket.
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Poisson manifold

• Smooth manifold M with a Poisson bracket
{·, ·} : C∞(M)× C∞(M) → C∞(M) making (C∞(M), {·, ·}) a
Poisson algebra.

• Poisson bivector: π antisymmetric (2, 0) tensor field1

{f,g} = π(df,dg) (3)∑
cyclic i,j,h

πik ∂kπ
jh = 0 (Jacobi)

1[Vai94, p. 4][DZ05, p. 6][LM87, p. 109]
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Remarks

• [π, π]S = 0 Schouten-Nijenhuis bracket2

• Symplectic manifold is Poisson3

{·, ·} : C∞(M)× C∞(M) → C∞(M)
(f,g) 7−→ {f,g} = ω(Xf, Xg) = π(df,dg)

(4)

2[Vai94, p. 6] [DZ05, p. 27][BV88]
3Sign convention ιXfω = −df
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Poisson Hamiltonian vector field

• Sharp homomorphism ♯ : Ω(M) → τ(M) defined also if π
degenerate

• Hamiltonian vector field

Xf = (df)♯ = π(df, ·) (5)

Xf f = π(df,df) ≡ 0 (6)

Nondegenerate Poisson manifold is symplectic

ω(X, Y) = π(X♭π , Y♭π), ∀X, Y ∈ τ(M) (7)

Jacobi grants closedness of ω!
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Poisson morphism F : (M, πM) → (N, πN)

• bivectors are F-related

πM(f ◦ F,g ◦ F) = πN(f,g) ◦ F, ∀f,g ∈ C∞(N) (8)

• pullback is Lie algebra homomorphism

{F∗f, F∗g}M = F∗{f,g}N (9)

Poisson vector field⇐ Hamiltonian vector field4

LXπ = 0 (10)

Local flow Θt(p) is Poisson diffeomorphism
4LM87, p. 122.
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Example

F :R4 → R2

(q1,p1,q2,p2) 7−→ (x, y) = (q1,p1)

πij4 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 πij2 =

(
0 1
−1 0

)

JπMJT = πN ◦ F
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Symplectic foliation of a Poisson manifold

How does the motion along Hamiltonian vector fields look like
on a Poisson manifold?

• Poisson submanifold ι : S→ M such that every
Hamiltonian vector field is tangent to S

• S Poisson manifold such that ι is Poisson morphism5

• Characteristic space

Cp = Im (♯p) = ♯p
(
T∗pM

)
⊂ TpM (11)

5Mei17, p. 19.
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Symplectic foliation of a Poisson manifold

Theorem (Symplectic foliation)
The characteristic distribution of a Poisson manifold is a
smooth generalized distribution spanned by Hamiltonian
vector fields. It is integrable, and its leaves S are
nondegenerate Poisson submanifolds6.

6[OR04, p. 131][LM87, p. 130]
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Symplectic foliation of a Poisson manifold

• Every Poisson manifold is a union of disjoint immersed
symplectic submanifolds, the immersion being a Poisson
morphism.

• Two points belong to the same leaf if and only if they can
be connected by a piecewise-smooth curve consisting of
integral curves of Hamiltonian vector fields.

• The dimension of the leaf through a point is the rank of π
at that point.
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Poisson Reduction

Problem: Let ψ : G×M→ M be a smooth action of a Lie group
G on a manifold M.

• When is the quotient space a manifold?
• Does the quotient preserve structures existing on M?
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Lie groups actions

Recall: the action of G on M is

• proper7 if [some technical condition about compactness], always
given in the following

• free if all isotropy subgroups are trivial

Furthermore if (M, π) is a Poisson manifold the action of G is

• Poisson if the map g : p 7→ g · p is a Poisson morphism for
all g ∈ G,p ∈ M

7Lee12, p. 543.
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Quotient Manifold Theorem

Theorem (Quotient Manifold)
If a Lie group G acts smoothly, freely and properly on a smooth
manifold M then the orbit space M/G is a smooth manifold of
dimension dimM− dimG with unique smooth structure such
that the canonical projection is a smooth submersion8.

What happens removing freeness?

8Lee12, p. 544.
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Stratified space

Let X be a topological space, and S = {Si}i∈I a locally finite
partition of X such that

• the pieces of S are locally closed smooth manifolds
Si ⊂ X, called strata;

• the strata fulfill a frontier condition.9

The pair (X,S) is called stratified space, or stratification of X.

9if a stratum meets the closure of another, the first stratum is contained in
the closure of second. Si ∩ S̄j ̸= ∅ ⇒ Si ⊂ S̄j. See [OR04, p. 31].
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Stratified space - remarks

• collection of manifolds fitting together nicely
• in general of different dimensions
• in general not a manifold itself
• e.g. intuitively, a simplex: manifolds = faces

• A SS can be endowed10 with an appropriate smooth
structure and an algebra of smooth functions C∞(X).

10OR04, p. 32.
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Stratification Theorem

Theorem (Stratification)
If a Lie group G acts smoothly and properly on a smooth
manifold M then the orbit space M/G is a smooth stratified
space11.

11See [OR04, pp. 75,84] for the description of the strata as connected
components of the reduced orbit type submanifolds.

17



Problem: Act with a Lie group G on a manifold M. When is the
quotient space a manifold? Does the quotient space preserve
structures existing on M?
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Problem: Act with a Lie group G on a manifold M. When is the
quotient space a manifold? Does the quotient space preserve
structures existing on M?
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Poisson stratified spaces

A Poisson stratification12 of a topological space X is a smooth
stratification (X,S) with a Poisson algebra (C∞(X), {·, ·}) such
that

• each stratum is a Poisson manifold, and
• each inclusion is a Poisson morphism.

12ORF09, p. 1271.
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Regular and Singular Poisson Reduction 13

Theorem (Poisson reduction)
G Lie group acting smoothly and properly on Poisson manifold
(M, π).

• Poisson action: the quotient space is a Poisson stratified
space;

• Poisson free action: the quotient space is a Poisson
manifold;

• unique structure such that the canonical projection is
Poisson morphism.

13[OR04, p. 364] [ORF09, p. 1273]
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Simplex stratified Poisson structure



The standard simplex

0 2 “3”1

Figure 1: Simplices fully representable in three dimensions

∆n ⊂ Rn+1 = {x ∈ Rn+1 :
∑
i
xi = 1, xi ≥ 0} (12)
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Support and faces14

∆n ⊂ Rn+1 = {x ∈ Rn+1 :
∑
i
xi = 1, xi ≥ 0}

• I = {0, . . . ,n}
• supp(x) = {i ∈ I : xi > 0}
• J ⊂ I with d+ 1 elements, d = 0, . . . ,n defines

• d-face ∆̊J = {x ∈ ∆n : supp (x) = J}
• closed d-face ∆J = {x ∈ ∆n : supp (x) ⊂ J}

14AL84, p. 235.
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Goal: endow the standard simplex with a stratified Poisson
structure via a double reduction procedure.
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Regular Poisson reduction

• Quadratic Poisson structure15 {zi, zj} = Aij zizj on
M = Cn+1 − {0}

• A antisymmetric (n+ 1)× (n+ 1) (will be fitness matrix in
zero-sum games)

Action of G = C− {0} on M by complex multiplication
element-wise

ψλ(z) = ρeiα·(r0, . . . rn, θ0, . . . , θn) = (ρ r0, . . . ρ rn, α+θ0, . . . , α+θn)

Free, proper and Poisson: M/G Poisson manifold (complex
projective space)
15ORF09.
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Singular Poisson reduction

Further action of Tn on M/G:

ψT([z]) = T · [z] = (eiϕ1 , . . . , eiϕn) · [(z0, z1, . . . , zn)]
= [(z0, eiϕ1z1, . . . , eiϕnzn)]

(13)

• well defined for any representative element of the class
• Poisson and proper, not free
• CP(n)/Tn Poisson stratified space

26



π :CP(n) →CP(n) /Tn

[(ri, θi)] 7−→ [(ri)]

ξ :CP(n) → ∆n ⊂ Rn+1

[z] 7−→
(

r20
r20 + · · ·+ r2n

, · · · , r2n
r20 + · · ·+ r2n

)

• well defined
• onto the standard simplex
• [z] ∼ξ [w] ⇐⇒ [z] ∼Tn [w]

∆n ∼= CP(n)/Tn (14)

The standard simplex is a Poisson stratified space with unique
Poisson structure such that the canonical projection is a
Poisson morphism.
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The stratified Poisson structure of a simplex

• The strata are precisely the faces of the simplex16

• The resulting Poisson structure on ∆n is

{xi, xj} = xixj
(
Aij −

∑
h
(Aih + Ahj)xh

)
(15)

• This actually is a Poisson structure for the whole Rn+1

such that the faces are Poisson submanifolds.

16Isotropy type submanifolds analysis.

28



Next step: A zero-sum replicator dynamical system on ∆n is
Hamiltonian with respect to this Poisson structure if it admits
an interior fixpoint17.

17[AD14], [AL84]
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References for this section

• Encyclopedia on Hamiltonian reduction [OR04]
• Simplex Stratified Poisson structure [ORF09], [AD14]

30



Evolutionary games and replicator
dynamics



• Consider a population composed of interacting
individuals;

• each individual has at its disposal a finite set of behaviors,
traits, pure strategies to adopt;

• on this choice and via the interaction with other
individuals depends his fitness, his well-being, his payoff,
measured in some units;

• via some mechanism (inheritance, learning, imitation,
mutation, ...) successful strategies spread;

• how does the average population strategy evolve?
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Normal form games18

An N-normal form game (∆N,g) is the collection of

• a set of N+ 1 pure strategies {R0, . . . ,RN};
• a game space ∆N ∈ RN+1

• a population of interacting individuals;
• a payoff function

g :∆N ×∆N → R

p,q 7−→ g(p,q)
(16)

A point in game space is called a strategy, and g(p,q) is the
payoff of the strategy p against the strategy q.
18HS98, p. 57.
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Strategies and pure strategies

• Pure strategies: belong to some abstract strategy space.
Behavior, physical trait, belief, ...

• Strategy
• discrete probability distribution of pure strategies usage
for a single individual;

• distribution of pure strategies in the population.
• pi ≥ 0,

∑
i pi = 1⇒ p ∈ ∆N

• Identify abstract pure strategy Ri with vertex strategy ei of
simplex

• p = pi ei
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Interaction

• Local: the payoff of an individual employing a certain
strategy depends on the outcome of a pairwise encounter
with another individual

• bilinear payoff
• e.g. Hawks and Doves

• Global: no actual pairwise encounter occurs; the payoff of
a strategy depends on the actual state of the population
as a whole

• nonlinear payoff
• e.g. sex-ratio
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Payoff function

g : ∆N ×∆N → R

p,q 7−→ g(p,q)
(17)

• g(p,q) = payoff to use strategy p vs strategy q
• Always linear in first argument: g(p,q) = g(piei,q) =∑

i (prob. I use i-th pure strategy)· (payoff of i-th pure strategy vs q)

= pi g(ei,q) =: pigi(q) (18)

• Second?
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Local interaction

1 vs 1, many times: random pairwise encounters in population

• q = your prob. distribution of pure strategies usage
• linearity in second argument

gi(q) = payoff of i-th pure strategy vs q =∑
j (payoff of i-th pure strategy vs j-th pure strategy) · (prob. you use j-th pure

strategy)

= gi(ej)qj =: gij qj (19)

Payoff matrix gij = g(ei, ej)
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Hawks and Doves

• Non lethal fights between animals of the same species
• Darwinian fitness i.e. reproductive success
• carefully decide whether to escalate a fight or not

Consider two pure strategies:

• Dove: show off and provoke the opponent, but quit if the
opponent actually escalates

• Hawk: fights until your or your opponent’s defeat, no
matter what.
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Hawks and Doves

• Avoided fight has no consequences;
• won fight increases fitness by gain G;
• lost fight decreases fitness by cost C > G.

meeting a dove meeting a hawk
a dove gets G/2 0
a hawk gets G G−C

2

to be continued...
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Global interaction

No pairwise encounter occurs

• g(p,q) = payoff of a p-strategist in a population with
average q-strategy

• Needs not be linear in second argument, e.g. sex ratio19

g(p,q) = p0
q0 +

p1
q1 (20)

The more females there are in a population, the less
convenient it is to have female offspring.

19HS98, pp. 60,65.
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Linear payoff in the following; similar results hold, taking care
of adding a notion of locality to some definitions20.

20HS98, pp. 63,65.
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Set of best replies

• Set of best replies to q ∈ ∆N

β(q) = {p ∈ ∆N : g(p,q) = max
p′∈∆N

g(p′,q)} (21)

• Replace p0 = 1−
∑n

i=1 pi

g(p,q) = g0(q) +
n∑
i=1

pi (gi(q)− g0(q)) (22)

• Non-linear in q does not matter: linear in p...
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Set of best replies

... so that β(q) is a nonempty union faces, containing a vertex
at least and the whole simplex at most. A fixed q is the
”inclination” of the payoff function.

q q q

Δ
2 Δ

2

Payoff

Slope strategy

Δ
2

β(q)β(q) β(q)

Figure 2: g(p,q) for q fixed, as a function of p for ∆2
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Slope strategy

g(p,q) = g0(q) +
n∑
i=1

pi (gi(q)− g0(q))︸ ︷︷ ︸
≡0∀i at q̂

(23)

• Strategy q̂ such that g(p, q̂) = gi(q̂) for all i, no matter
which p

• May or may not exists!
• β(q̂) = ∆N

• Slope support:

gi(p) = gj(p) ∀i, j ∈ supp (p)
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Static notions of equilibrium

Nash strategy: best reply to itself, i.e. p ∈ β(p)

• Strict: β(p) = p, can only be vertex
• If slope exists, it is Nash β(q̂) = ∆N ∋ q̂
• Nash has slope support
• Interior Nash strategy iff slope strategy
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Stability of Nash strategy

• Crucial step from GT to EGT
• If alternative best reply exists, why should one stick with p
Nash?

g(p,p) = g(q,p), ∀q ∈ β(p) (24)

• Stable p Nash: g(p,q) > g(q,q), ∀q ∈ β(p),q ̸= p
• Mutants check their own growth!
• Strictly population concept, doesn’t make sense 1 vs 1.
Indeed..
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Static notions of equilibrium

Stable Nash if and only if21

• Evolutionarily stable strategy p̂: if everybody is using it, a
mutant minority can not invade

g(p̂, ϵp+ (1− ϵ)p̂) > g(p, ϵp+ (1− ϵ)p̂) (25)

for all p ̸= p̂, and for all
0 < ϵ < some positive invasion threshold.

21HS98, p. 63.
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Back to Hawks and Doves

ps =
(
1− G

C ,
G
C
)
interior slope Nash strategy, stable.

Sweet spot of optimal frequency of engaged fights (in this case
precisely the ratio G/C between the gain of a won fight and the
cost of a lost one).
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• Does a population reach an ES strategy?
• Model the evolution of the average population strategy
driven by the interaction between the individuals of the
population.

• Dynamical system on the simplex.

(Change notation: p→ x;g→ f)
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Replicator dynamics

Basic model for evolution of types frequencies22

• type i growth rate = its fitness - average population fitness

ẋi = xi
(
fi(x)− f̄(x)

)
(26)

f̄(x) =
∑
i
xi fi(x) (27)

The replicator vector field is tangent to every face of the
simplex ∆N → no mutations

22TJ78.
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Static and dynamic equilibrium

• replicator fixpoint ⇐⇒ has slope support
• x Evolutionarily stable⇒ x asymptotically stable fixpoint23

A lot more to say on the relation between the static and
dynamic notions of equilibria, both in the continuous and
discrete replicator24, but focus now on antisymmetric fitness
function

23HS98, p. 70.
24Sel91, p. 29.
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Zero-sum replicator dynamics



Zero-sum games

• Gain of a player is exactly loss of another
• Extensively studied in classical GT25

• Very restrictive assumption for real life applications
• Discrete zero-sum replicator: model for gene conversion26

• Interesting in its own right for Hamiltonian character
• Related to Rock Paper Scissor games

25Sig11, p. 4.
26Nag83b; Nag83a.
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Rock Paper Scissor games

Three strategies cyclically beating each other (not necessarily
zero-sum)

Figure 3: Rock Paper Scissor
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Zero sum replicator

• fi(x) =
∑

j Aij xj

• A antisymmetric fitness matrix
• f̄(x) ≡ 0

ẋi = xi fi(x) (28)

• For ZSG only vertices can be ESS, not very interesting.
• Still two mutually exclusive classes of fixpoints on which
the dynamics depends exist27.

27AL84.
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Interior and Boundary semi-defined fixpoints

• E0 = {x ∈ ∆̊ : fi(x) = 0 ∀i} ≡ interior fixpoints
• E− = {x ∈ ∆ : fi(x) ≤ 0 with at least one inequality strict}
• E+ = {x ∈ ∆ : fi(x) ≥ 0 with at least one inequality strict}

Theorem
These three sets are convex subsets consisting entirely of
equilibria. E+ and E− are subsets of the boundary of ∆.
Precisely one of the following two scenarios occurs28

• E0 ̸= ∅, E+ = ∅ = E−, interior case;
• E0 = ∅, E+ ̸= ∅, E− ̸= ∅, boundary case.

28AL84.
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Interior and Boundary semi-defined fixpoints - remark

Upon A→ −A

• E0 is invariant
• E± are exchanged
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Hamiltonian dynamics of zero-sum replicator games

• Zero-sum replicator in interior case, x̂ ∈ E0
• The replicator vector field is Hamiltonian with respect to
(minus) the simplex Poisson structure29

• A Hamiltonian function is Hx̂(x) = −
∑

i x̂i ln xi

• Convex and coercive with unique strict minimum at x̂
• Proof: direct computation dH♯ = Xrep using fi(x̂) = 0∀i.

29AD14.
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Hamiltonian dynamics of zero-sum replicator games

• Closure of interior trajectories is compact invariant set
contained in ∆̊− E030

• Interior filled with invariant manifolds
• All interior fixpoints are neutrally stable
• coexistence, no strategy goes extinct

30AL84, p. 239.
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Hamiltonian dynamics of zero-sum replicator games

• Constant Poisson structure coordinates yi = ln(xi/x0)
• Hamiltonian in new coordinates still convex

H(y) = ln
(
1+

∑
i
eyi
)

−
∑
i
x̂iyi (29)

• From here: Convexity methods in Hamiltonian mechanics;
“The dynamics on three-dimensional strictly convex
energy surfaces”
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Figure 4: Zero-sum replicator - Hamiltonian interior case
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Figure 6: Zero-sum replicator - Hamiltonian interior case
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62



Zero sum replicator boundary dynamics

• Zero-sum replicator in boundary31 case E± ̸= ∅
• e− ∈ E− ⇒ He− strictly decreasing along interior
trajectories

• The ω-limit of all interior trajectories is a subset of the
boundary, in particular

J− = {i ∈ I : fi(e−) = 0∀e− ∈ E−}

• strategies doing as well as possible against E−

31AL84, p. 239.
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Zero sum replicator boundary dynamics

• Indeed, J− precisely surviving strategies!

ω(p) ⊂ ∆J− ∀p ∈ ∆̊ (30)

• Points in the closed face

∆J− : i /∈ J− ⇒ xi = 0

lim
t→∞

xi(t) = 0 for all i /∈ J− (31)

Analogue results for E+ and α-limit, so A→ −A effective time
reversal
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Asymptotic Hamiltonian behavior

(
dH♯

)i
= Xirep − xi fi(x̂) + xi

∑
h/∈supp(x̂) xh fh(x̂)

• Extra terms vanish identically if x̂ interior equilibrium
• Extra terms vanish asymptotically if x̂ ∈ E−

• either fi(x̂) = 0 or xi → 0

• Correspondingly LXrepπ = LdH♯π + LXbdπ

• The first term vanishes identically and the second
asymptotically

• It does not look like the second term can be written
conformally as F(x)π with F vanishing on the future face;
still work in progress.
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Figure 8: Zero sum replicator, boundary scenario, α-limit
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Figure 9: Zero sum replicator, boundary scenario, ω-limit
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Zero sum replicator boundary dynamics


0 −1.5 1.3 −2.5
1.5 0 −2.0 2.0
−1.3 2.0 0 −1.0
2.5 −2.0 1.0 0



• e− = (0.2, 0.4, 0.4, 0), fi(e−) = (−0.78, 0, 0, 0)
• J− = {1, 2, 3} surviving in classical RPS dynamics
• 0 extincted
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Zero sum replicator boundary dynamics


0 −1.5 1.3 −2.5
1.5 0 −2.0 2.0
−1.3 2.0 0 −1.0
2.5 −2.0 1.0 0



• e+ = (0.27, 0.31, 0, 0.42), fi(e+) = (0, 0, 0,+0.8)
• 3 invaded in the past
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Conclusions



Recap

• A simplex is endowed with a stratified Poisson structure
via a reduction procedure; every face is a Poisson
manifold.

• The replicator vector field modeling the evolution of the
average population strategy is tangent to every face of the
simplex

• Zero-sum dynamics with interior fixpoints is Hamiltonian
(coexistence)

• Zero-sum dynamics with semi-definite boundary fixpoints
is asymptotically Hamiltonian (competition)
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From here

On this system

• Degenerate replicator dynamics [HS98, p. 235]
• ”Survival of the fittest” [AL84, p. 240] for boundary
dynamics

• Dynamics on convex energy surfaces [HWZ98]
• Hamiltonian chaos and discrete replicator
[SC03][PMC18][AL84][Sel91]

• Further investigate connection with Lotka-Volterra system
[DFO98]
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From here

On different systems

• Add interaction: bimatrix and polimatrix games [Hof96],
[AD14]

• Investigate geometry of different dynamics: imitation,
best-response, adaptive, mutator, …[HS98], [Aki79], [GP04]
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