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We want to study the dynamics of a holomorphic map f from the Riemann sphere to itself in
a small neighborhood of a parabolic fixed point. The exposition follows closely [6, Chapter
10]. Other useful resources are [1, Chapter 6] and [2, Chapter 2].

The picture is the following: If f : Ĉ → Ĉ is a globally defined holomorphic function and
ẑ is a fixed point with multiplier equal to one, then around ẑ there exist non-unique “local
basins of attraction”, called attracting petals, each determining uniquely a global basin of
attraction. Orbits in each basin converge to the fixed point along a direction determined by
the corresponding petal. Similarly there exist repelling petals, defined as attracting petals
for the locally well-defined and holomorphic inverse of f . Petals can be chosen so that
their union is an open neighborhood of the fixed point, each petal intersecting precisely its
neighbors, producing a “flower” pattern as in Fig. 3.

The plan is to build open regions having the fixed point on their boundary where the dy-
namics under f can be conjugated to (almost) a translation. The limit behavior of this
conjugated dynamics is readily understood and mapped back in the original space.

Express f in a local chart, which can be chosen so that the fixed point corresponds to z = 0,
and therein expand f in its converging power series

f(z) = λz + a2z
2 + a3z

3 + · · · (1)

Recall that the coefficient λ = f ′(0) is called multiplier of the fixed point, and that a fixed
point is called parabolic if λ is a q-th root of unity, and f ◦q 6= id.

Definition 1. Let f ∈ Hol(Ĉ) fix ẑ. The multiplicity of the fixed point ẑ is the order of the
first non-vanishing term of the expansion of f(z)− z around ẑ.

Remark 2. Since the expansion of f(z) − z around a fixed point in the above local chart
reads

f(z)− z = (λ− 1) z + a2z
2 + a3z

3 + · · ·

the multiplicity of a fixed point of a non-constant holomorphic function is greater or equal
than 2 if and only if the multiplier λ is equal to 1.

In the following we consider parabolic fixed points with multiplier equal to one or, equiva-
lently, multiplicity greater or equal than 2. The multiplicity of the fixed point is denoted by
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Figure 1: From [6, p. 105].

n+ 1, so that n is an integer greater or equal than 1; and the nonzero coefficient of the term
of order (n+ 1) in the expansion of f is denote by a. Thus in a neighborhood of a parabolic
fixed point with multiplier equal to one we have

f(z) = z + azn+1 + higher order terms (2)

with integer n+ 1 ≥ 2 and complex a 6= 0.

Next we introduce an array of 2n vectors that will turn out to provide the possible directions
and rate of convergence for orbits converging to the origin without actually reaching it.

Definition 3. Consider f as in (2). The repulsion vectors for f at the origin are the n-th
roots of +1/an, and the attraction vectors for f at the origin are the n-th roots of −1/an.

Clearly there are n equally spaced attraction vectors, separated by n equally spaced repulsion
vectors (Fig. 1); in particular the angle between a vector of a type and one of its neighbors
of the opposite type is π/n. If v0 is any repelling vector we can label the attraction and
repulsion vectors as

vj = v0e
πij/n, j = 0, . . . , n− 1, so that vnj = (−1)j/an (3)

Thus vj is an attraction vector (or simply attracting) if j is odd, and repelling if j is even.

Remark 4. By the inverse function theorem, the inverse f−1 of f is well defined and holo-
morphic in a neighborhood of the origin. By chain rule λf−1 = 1/λf , so f and f−1 have the
same set of fixed points with multiplier equal to one. It is not hard to check that in a small
enough neighborhood of one of them where f is invertible and expanded as in (2), f−1 is
expanded as

f−1(z) = z − azn+1 + higher order terms (4)
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Thus the attraction vectors for f at the origin are precisely the repulsion vectors for f−1 at
the origin, and vice versa.

Let’s make precise the idea that attraction (resp. repulsion) vectors provide the directions
and rate of convergence for orbits converging under f (resp. f−1) to the origin without
actually reaching it; for this we need a definition and a lemma.

Definition 5. An orbit Of (z0) = {z0
f7→ z1 7→ . . . } is said to converge to 0

• non-trivially if zk → 0 as k →∞, but zk 6= 0 for all k ≥ 0;

• along an attraction vector if limk→∞
n
√
k zk = vj where vj is an attraction vector for f .

In this case we also write zk ∼ vj/
n
√
k.

Lemma 6. An orbit Of (z0) converges to 0 non-trivially if and only if it converges to 0 along
one of the attraction vectors.

Proof. The implication [⇐] is obvious. Consider an attraction vector vj, which is nonzero

per definition, so that limk→∞
n
√
k zk = vj 6= 0. Assume Of (z0) converges trivially to the

origin; then there exists K ≥ 0 such that zk = 0 for all k ≥ K, so limk→∞
n
√
kzk = 0, which

is a contradiction.

To prove the other direction we need to build open regions having the fixed point on their
boundary, each containing precisely one attraction vector, such that in each of those regions
the dynamics under f can be conjugated to (almost) a translation in the direction of the
conjugated corresponding attraction vector. The limit behavior of non-trivially converging
orbits is readily understood in the conjugated space, and yields the desired result when
mapped back in the original space. A similar technique is employed to prove Theorem 10,
so we prove these results together later on.

Definition 7. The parabolic basin of attraction for a fixed point ẑ of f ∈ Hol(Ĉ) with
multiplier equal to one and for one of its attraction vectors vj is

A(ẑ, vj) = {z ∈ Ĉ s.t. Of (z) converges to ẑ along vj} (5)

When there is no risk of ambiguity about the considered fixed point we simply write Aj for
A(ẑ, vj). The immediate basin is defined to be the unique connected component of Aj which
maps into itself under f . See Fig. 2.

Lemma 8. Parabolic basins of attractions

1. are fully invariant;

2. are disjoint;

3. are open;

4. are contained in Fatou(f);

5. have boundary contained in Julia(f).
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Figure 2: From [6, p. 106].

Proof.

1. We have to show that z0 ∈ Aj ⇔ f(z0) ∈ Aj. Let z0 ∈ Aj and denote zk =

f ◦k(z0). Then limk→∞
n
√
k zk = vj. Let wk = zk+1; it follows that limk→∞

n
√
k wk =

limk+1→∞
n
√
k + 1

n√
k

n√k+1
zk+1 = vj, i.e. w0 ≡ z1 ≡ f(z0) ∈ Aj. The converse is similar.

2. Let z ∈ Aj ∩ Ah, then by uniqueness of the limit limk→∞
n
√
k zk = vj = vh, so j ≡

h(mod 2n) and Aj = Ah.

3. We could not find an immediate way to show that parabolic basins are open. For the
moment we accept this result, and prove it later on (Corollary 15), when the Parabolic
Flower Theorem is established.

4. Let z0 ∈ Aj, which is open. Take a neighborhood U of z0 contained in Aj: therein

zk ∼ vj/
n
√
k, i.e. the sequence of iterates f ◦k|U converges uniformly to the constant

map 0, so z0 ∈ Fatou(f).

5. Consider two cases for a point on a basin boundary. First let z0 ∈ ∂Aj such that its
orbit converges to 0. Since z0 is on a basin boundary, and basins are open and disjoint,
z0 is not in any other basin, so its orbit converges to 0 trivially, i.e. it eventually lands
exactly on the parabolic fixed point, which belongs to the Julia set [6, Lemma 4.7].
Since the Julia set is fully invariant [6, Lemma 4.3], the whole orbit is contained in the
Julia set.

Secondly consider a point z0 on a basin boundary whose orbit does not converge to
the origin; then we can extract a subsequence zk(i) which is bounded away from the
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Figure 3: Flowers with 2n = 2 (left) and 2n = 6 (right) petals. If n = 1, the intersection of
the two petals has two simply connected components. If n ≥ 2, each petal intersects each
of its neighbors in one simply connected region, and is disjoint from the other petals. Each
arrow indicates roughly how points are moved by f . Adapted from [6, p. 112].

origin. The sequence of iterates does converge to 0 throughout Aj, hence the family
{f ◦k} cannot be normal in any neighborhood of z0, which is then a Julia point.

This concludes the proof of Lemma 8.

It is often convenient to have a purely local analog for the global concept of “basin of
attraction”.

Definition 9. Let f ∈ Hol(Ĉ) have a fixed point ẑ with multiplicity n + 1 ≥ 2 and let
v be an attraction vector for f at ẑ. Let N be an open neighborhood of ẑ where f−1 is
well-defined and holomorphic. An open set P ⊂ N is called an attracting petal for f and v
at ẑ if

• f(P ) ⊆ P , and

• an orbit Of (z0) eventually enters P if and only if Of (z0) converges to ẑ along v.

Similarly, an open set Q ⊂ f(N) is called a repelling petal for f and for the repulsion vector
u if it is an attracting petal for f−1 : f(N)→ N and for u.

The following result was proved in a preliminary form by Leopold Leau [1897], and in in-
creasingly satisfactory forms by Julia [1918] and Fatou [1919-1920].

Theorem 10 (Parabolic Flower). Within any neighborhood of a fixed point ẑ with multiplicity
n+ 1 ≥ 2 there exist 2n simply connected petals Pj, j = 0, . . . , 2n− 1, attracting or repelling
according to whether j is even or odd. The petals can be chosen so that

⋃
j Pj ∪ {ẑ} is an

open neighborhood of ẑ. If n = 1, the intersection of the two petals has two simply connected
components. If n ≥ 2, each petal intersects each of its neighbors in one simply connected
region, and is disjoint from the other petals.

5



Remark 11. Let’s have a look at the global picture before jumping into the proof. If
f ∈ Hol(Ĉ) is a globally defined holomorphic function and ẑ is a fixed point of multiplicity
n+ 1 ≥ 2, then each attracting petal Pj about ẑ determines a corresponding parabolic basin
of attraction Aj, consisting of all z0 for which the orbit Of (z0) eventually lands in Pj, and
hence converges to the fixed point from the associated direction vj.

Remark 12. Orbits in an attracting petal stay therein and converge to 0 along the cor-
responding attraction vector. Orbits in a repelling petal converge to 0 under f−1 (which
is locally well defined and holomorphic) along the corresponding repulsion vector. Under
f these orbits can either leave the repelling petal without entering the attracting petal; or
enter the intersection between the repelling petal and a neighboring attracting petal, to
eventually converge to 0 along an attracting direction. Thus around a parabolic fixed point
with multiplier equal to one no spiral orbit nor periodic orbit is allowed - more precisely,
there exists a neighborhood of the fixed point that does not contain any periodic orbit (but
for the trivial one, namely the fixed point itself). This intuitively explains the arrows in
Figures 1 and 3, and is proved rigorously in due course, see Corollary 14.

Remark 13. In the following proof we first build regions, denoted by Pj(R), that are petals
according to Definition 9 but do not fulfill the intersection property stated in Theorem 10;
next we extend those regions to “fatter” regions Pj(R) ⊃ Pj(R), that are again petals and
furthermore fulfill the desired intersection property.

Proof. (Lemma 6 and Parabolic Flower Theorem)
The idea is to conjugate the dynamics to almost translation in open regions having 0 on

the boundary. Let

φ(z) = w =
c

zn
, c = − 1

an
(6)

Recall the definition of attracting and repelling vectors:

vnj =
(−1)j

an
(7)

with vj attracting (resp. repelling) if j is odd (resp. even). Thus

φ(vj) = (−1)j+1 (8)

The goal is to label the branches of of the multi-valued function

φ−1(w) = n

√
c

w
(9)

To do so let’s cover the punctured plane with open sectors of angle 2π/n bounded by two
consecutive vectors of the same type:

∆j :=
{
z ∈ Ĉ s.t. z = reiθvj, r > 0, |θ| < π

n

}
(10)

The plan is now the following. Consider an attracting vector vj:
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Figure 4: Definition of ∆j

1. In ∆j, φ is invertible;

2. Study the dynamics of φ ◦ f ◦ φ−1, called conjugated dynamics, in φ(∆j);

3. Find a “nice” region for the conjugated dynamics (invariant and where orbits have a
simple asymptotic behavior);

4. Go back up via φ−1.

1. In ∆j, φ is invertible It is not hard to check that

φ : ∆j
∼−→ C \ R− (11)

is a biholomorphism, where R− = (−∞, 0] (recall that we choose vj attracting, so j is odd).
Apply φ to a point z ∈ ∆j:

φ
(
reiθvj

)
=

c

rneinθvnj
=

1

rn
e−iθn (12)

Hence |θ| < π/n implies nθ 6= π(mod2π), and the inverse of (11) is

ψj : C \ R−
∼−→ ∆j, Reiα 7→ reiθvj (13)

with R > 0, α 6= π(mod2π), r = 1/ n
√
R and θ = −α/n.

The ray {z ∈ ∆j : z = r vj, r > 0}, i.e. the set of points in ∆j with θ = 0, is mapped via
φ to the positive real axis, with limr→0 φ(r vj) = ∞ and limr→∞ φ(r vj) = 0. Similarly, φ
maps the rays bounding ∆j to the negative real axis. Hence φ “opens and inverts” ∆j. It is
also not hard to check that the “right” half of ∆j, namely the points obtained rotating the
direction of vj by an angle θ fulfilling −π/n < θ < 0, are mapped onto the upper half plane;
and that the “left” half of ∆j is mapped onto the lower half plane. See Fig. 5.

It is useful to investigate the image via ψj of a line with constant imaginary part in the w-
plane, namely Sj(y) := ψj{w = x+ iy : x ∈ R, y = const 6= 0}. If y > 0, Sj(y) must belong
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Figure 5: Left: Sj(y) := ψj{w = x+ iy : x ∈ R, y = const}. Right: φ : ∆j
∼−→ C \ R−

to the right half of ∆j, and must converge to 0 when x→ ±∞. Furthermore the bigger y is,
the closer should Sj(y) be to the origin. Intuitively, Sj(y) is tangent to the direction given
by vj for big values of x, and to the direction given by vj−1 for big values of −x; we make
this precise in the following. See left column of Figs. 5-6.

Similarly (right column of Fig. 6), consider Qj(x) := ψj{w = x+ iy : x = const > 0, y ∈ R}.
The point of Qj(x) corresponding to y = 0 lies on the direction of vj in z-space, the closer
to the origin the bigger x is; and Qj(x) converges to zero as |y| → ∞.

2. Study the conjugated dynamics in φ(∆j) To study f close to the origin in ∆j we
need to look outside a large disk in the slit w-plane, see fig. (7). Let

Fj := φ ◦ f ◦ ψj (14)

Recall that f(z) = z(1 + azn + o(zn)) as z → 0 and that ψj(w) = n
√

c
w

exists unique in ∆j

for w ∈ C \ R−. So

f ◦ ψj(w) = n

√
c

w

(
1 +

ac

w
+ o

(
1

w

))
as |w| → ∞

Fj(w) = φ (the above line)

= c
w

c

(
1 +

ac

w
+ o

(
1

w

))−n
= w

(
1 +

1

w
+ o

(
1

w

))
as |w| → ∞

where we used the expansion of (1 + kx)−n around x = 0, and the fact that −nac = +1.
Thus

Fj(w) = w + 1 + o(1) as |w| → ∞ (15)

where o(1) is a function of w that goes to 0 as |w| → ∞1.

1It can be shown, but we do not need it, that this remainder term is O
(
1/ n
√
|w|
)
. See [6, p. 107]

8



Figure 6: Images via ψj : C\R−
∼−→ ∆j, w 7→ z of discrete sets of points with the same real or

imaginary part in the slit w-plane. Top left: Bigger |Imw| in w-space give tighter curves in
z-space. Middle left: The curve in z-space is tangent to vj−1 for big negative values of Re w
in w-space (dark colors), and tangent to vj for big positive values of Re w (lighter colors),
for Im w > 0. Bottom left: ψj maps the positive real numbers to the direction determined
by vj (j odd; in this case vj ∝ i = (0, 1), and its direction is the imaginary axis in z-space),
swapping ∞ and 0. Top right: as Rew > R > 0 increases in w-space, the image curves in
z-space get tighter. Bottom right: for fixed Rew > 0, ψj(w)→ 0 as |Imw| → ∞.
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Figure 7: Define Fj away enough from the origin in the slit plane so that ψj lands in a given
neighborhood of the origin.

Hence, the conjugated dynamics for |w| → ∞ is “almost” a translation by +1 in the real
direction, that is the direction of φ(vj). In particular there exists R > 0 such that

|Fj(w)− w − 1| < 1

2
if |w| > R (16)

Recalling that Re(z) ≤ |z| we have

Re(w + 1− Fj(w)) ≤ |w + 1− Fj(w)| = |Fj(w)− w − 1| < 1

2
if |w| > R

so

ReFj(w) > Rew +
1

2
when |w| > R (17)

And translating this back in the z plane via Fj(w) = φ ◦ f(z) with w = φ(z) we have

Reφ (f(z)) > Reφ(z) +
1

2
when |z| is small enough (18)

Corollary 14 (No periodic orbits). A parabolic fixed point with multiplier equal to one has
a neighborhood that does not contain any periodic orbit but for the trivial one.

Proof. Let U be a neighborhood of the origin small enough for (18) to hold. If there was a
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Figure 8: Left: The slope of the vector Fj(w) − w is bounded. Right: It is not enough to
require |w| > R for the constraint (17) to hold true along the Fj-orbit of a point for which
it holds true.

k-periodic orbit z0 = f ◦k(z0) completely contained in U with k ≥ 1 and z0 6= 0 then

Reφ(z1) > Reφ(z0) +
1

2

Reφ(z2) > Reφ(z1) +
1

2
> Reφ(z0) + 2 · 1

2

Reφ(z0) = Reφ(zk) > Reφ(z0) +
k

2

(19)

which is absurd.

Thus as a consequence of (15) (the conjugated dynamics is almost a translation in the
positive real direction) we obtained (17) (the real part increases along the conjugated orbit),
where both statements hold for |w| big enough, i.e. |z| small enough. We can derive a
similar constraint on the slope of the vector Fj(w) − w, saying that the absolute value of
the variation of the imaginary party is smaller than the increase of the real part along the
conjugated orbit, for |w| big enough. Eq. (16) says that Fj(w) ∈ Bw+1(

1
2
), i.e. that the

image of w under Fj lands in the ball centered at w + 1 of radius 1/2, if |w| > R, so that
|slope| < 1

2
. See fig. (8). Now

slope =
ImFj(w)− Imw

ReFj(w)− Rew

the denominator being positive, so (this coarse estimation is enough)

|ImFj(w)− Imw| < ReFj(w)− Rew when |w| > R (20)

We are now in the position to show that an orbit converging to zero non trivially converges
along an attraction vector, and to prove the existence of petals.

3. Find a “nice” region for the conjugated dynamics We look for a region in the
slit w-plane in which, if the constraint (17) holds true for a point, it keeps holding true for
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Figure 9: Pj(R) = ψj(HR)

the orbit of this point under Fj. Observe (Fig. 8, right) that it is not enough to require
|w| > R. In the following, making use of Eq. (20), we will consider a fatter region, but for
the moment we play it safe and consider

HR = {w ∈ C : Rew > R > 0} (21)

Clearly Fj(HR) ⊂ HR; for if w0 ∈ HR then |w0| > R, so eq. (17) holds and Fj(w0) ∈ HR.
Consider the image of this region under ψj:

Pj(R) := ψj(HR) = {z ∈ ∆j : Reφ(z) > R} (22)

By restricting the domain of ψj to points w with bigger real part we are squeezing the image
into a smaller region of ∆j, see Fig. 6 top right and Fig. 9.

Claim The regions Pj(R) (with j odd) are attracting petals for f and for the attraction
vector vj at the origin, according to Definition 9.

Just like HR is invariant under the Fj-dynamics, Pj(R) is invariant under the f -dynamics:
if z ∈ Pj(R) then (18) holds and f(z) ∈ Pj(R). (?)

Furthermore, as in the proof of Corollary 14, if z0 ∈ Pj(R) then zk ∈ Pj(R) ⊂ ∆j for all
k ≥ 0 and

Reφ(zk) > Reφ(z0) +
k

2
(23)

so f ◦k(z0) = zk = ψj ◦ φ (zk) → ψj(∞) = 0 as k → ∞, i.e. the successive iterates of
f restricted to Pj(R) converge to the constant map Pj(R) → 0. Since Pj(R) is invariant
under f and 0 /∈ Pj(R), this means that an orbit that enters Pj(R) converges to zero non-
trivially. (??)

Conversely consider an orbit Of (z0) converging to zero non trivially, where z0 is a generic

point in Ĉ; by Eq. (18) then Reφ(zk+1) > Reφ(zk) + 1
2

whenever k is large enough. In
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particular there exists an m such that Reφ(zm) > R, hence zm ∈ Pj(R) ⊂ ∆j for some odd
j. Since f (Pj(R)) ⊂ Pj(R), it follows that zk belongs to this same Pj(R) for all k ≥ m. In
particular this means that an orbit converging to the origin along vj (and thus non-trivially)
eventually enters Pj(R). (???)

Let {zk} converge to zero non-trivially and consider the sequence wk = φ(zk); then from the
discussion above wk ∈ HR and wk+1 = φ(zk+1) = φ ◦ f(zk) = φ ◦ f ◦ ψj(wk) = Fj(wk) for
k ≥ m. By Eq. (17) Rewk → ∞ and in particular |wk| → ∞ as k → ∞, so by Eq. (15) we
have that wk+1 − wk −−−→

k→∞
1, and

1 = lim
k→∞

1

k

k−1∑
h=0

wh+1 − wh = lim
k→∞

wk − w0

k
= lim

k→∞

wk
k

In other words, the asymptotic behavior for a conjugated non-trivially converging orbit is

lim
k→∞

wk
k

= 1, or wk ∼ k as k →∞ (24)

4. Go back up via φ−1 Finally we can map this result back in z-space: consider again
an orbit {zk} converging to zero non-trivially, so

wk = φ(zk) =
c

znk
⇒ znk ∼

−1

na

1

wk
∼ −1

na

1

k

⇒ zk ∼ n

√
−1

na

1
n
√
k

For k big enough zk is inside some Pj(R) (with j odd), so the first square root of the right
hand side of the last line is uniquely defined and equal to one of the attraction vectors,
proving Lemma 6. Furthermore, considering (?), (??) and (???) in the discussion above, this
also proves that Pj(R) is an attracting petal.

Since f and f−1 have the same set of fixed points with multiplier equal to one, and the
same array of attraction-repulsion vectors with swapped roles, this also proves that an orbit

z0
f−1

7→ z1 7→ · · · under the inverse f−1 converges to zero non-trivially if and only if it converges
to zero along one of the repulsion vectors of f (which is indeed an attraction vector for f−1);
and that a repelling petal exists in the intersection of a small neighborhood of the origin
with ∆j, with j even.

Work out the details as an exercise. Start by showing that φ : ∆j
∼−→ C \R+ is a biholomor-

phism if j is even (so the vj defining ∆j is repelling). The direction of vj is mapped to the
negative real axis. Recall from Eq. (4) that the expansion of f−1 differs up to order n+1 from
that of f by the sign of a and show that the conjugated dynamics results in w 7→ w−1+o(1)
as |w| → ∞. Derive the analogues of constraints (17)-(20) and use them to discuss the in-
variance of −H(R) := {w ∈ C : Rew < R < 0} under the conjugated dynamics, and of
its image ψj(−H(R)) under the f−1-dynamics. Finally show that limk→∞wk/k = −1 for a
non-trivially converging orbit, and translate this result in the z-space.
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Figure 10: Pj(R) = ψj(WR)

To conclude the proof of the Parabolic Flower theorem we need to consider fatter petals,
preserving the dynamical behavior we just described and in addition intersecating as in the
statement of the theorem. The idea is to use Eq. (20) to extend the region HR yet preserving
the invariance under the conjugated dynamics. Define

WR := {w = u+ iv ∈ C : u+ |v| > 2R} ⊃ H2R (25)

By a simple geometrical argument (see Fig. 10)

h := inf
w∈WR

|w| = 2R sin π/4 =
√

2R > R (26)

This implies that Fj(WR) ⊂ WR for each odd j: Eq. (20) holds true for w ∈ WR, so the
absolute shift in the imaginary part is smaller than the positive shift in the real part, and
Fj(w) lies inside WR. See again Fig. 10.

It is now not hard to see that Pj(R) := ψj(WR) is an attracting petal for each odd j:
invariance follows from the invariance of WR under the conjugated dynamics; and the second
property defining a petal follows from the fact that Pj(R) ⊃ Pj(2R), the latter known to be
a petal.

First, let z ∈ Pj(R); then φ(z) ∈ WR and WR 3 Fj (φ(z)) = φ ◦ f ◦ ψj ◦ φ(z) = φ (f(z)),
so ψj (φ (f(z))) = f(z) ∈ ψj(WR) = Pj(R) i.e. f(Pj(R)) ⊂ Pj(R). Secondly, note that an
orbit that enters Pj(R) eventually enters Pj(2R), thus converging to zero along vj. Finally,
any orbit converging to zero along vj eventually enters Pj(2R), hence it also enters Pj(R).

Similarly, working with f−1 and j even leads to the repelling petals ψj(−WR), with −WR :=
{w : −w ∈ WR} = {w = u+ iv ∈ C : −u+ |v| > 2R}.
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Figure 11: The intersection WR ∩ (−WR) is a disjoint union V +
R t V

−
R , where V +

R is the
simply-connected open V-shaped region consisting of all u+ iv in the upper-half plane with
v > |u| + 2R (denoted here by E ∩ G), and V −R is the reflection in the lower-half plane
(denoted here by H ∩ F ).
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The intersection WR∩(−WR) is a disjoint union V +
R tV

−
R , where V +

R is the simply-connected
open V-shaped region consisting of all u + iv in the upper-half plane with v > |u| + 2R
(denoted by E ∩G in Fig. 11), and V −R is the reflection in the lower-half plane (denoted by
H ∩ F in Fig. 11). If j is odd (vj attracting), the right half of a petal corresponds to points
w with Imw > 0, and the left half of a petal corresponds to points w with Imw > 0; and
vice versa for j even. This is summarized in the following table:

j odd j even
Right upper lower
Left lower upper

Thus, for j odd and regions F,H as in Fig. 11,

Pj(R) ∩ Pj+1(R) = ψj(WR) ∩ ψj+1(−WR) = ψj(F ) ∩ ψj+1(H) =

ψj(H ∩ F ) = ψj+1(H ∩ F ) = ψj(V
−
R ) = ψj+1(V

−
R ) (27)

Similarly

Pj(R) ∩ Pj−1(R) = ψj(WR) ∩ ψj−1(−WR) = ψj(E) ∩ ψj−1(G) =

ψj(E ∩G) = ψj−1(E ∩G) = ψj(V
+
R ) = ψj−1(V

+
R ) (28)

concluding the proof of the theorem.

Corollary 15. Parabolic basins of attraction are open.

Proof. The Parabolic Flower Theorem grants the existence of a (non-unique) petal Pj as-
sociated to a parabolic fixed point with multiplier equal to one and to any of its attraction
vectors vj. Recall that a generic orbit is eventually absorbed by Pj if and only if it converges
to the fixed point along vj. The corresponding parabolic basin of attraction Aj is the set of
points whose orbit converges to the fixed point along vj. Thus

Of (z) eventually enters Pj ⇐⇒ Of (z) converges to the fixed point along vj

⇐⇒ z ∈ Aj
(29)

The set of points z whose orbit Of (z) eventually enters Pj is the union of the preimages of
Pj via all the k-fold iterates of f , so

Aj =
∞⋃
k=0

(
f ◦k
)−1

(Pj) (30)

which is open since Pj is open and each f ◦k is holomorphic, in particular continuous.

To conclude we can say something for the case of a parabolic fixed point (as usual, without
lost of generality, working in a chart where it corresponds to the origin) whose multiplier is a
primitive q-th root of unity, with q > 1. Everything we said so far applies to the non-identity
q-fold iterate f ◦q, for the multiplier λq of the fixed point with respect to f ◦q is 1:

λq = (f ◦q)′ (0) = (f ′(0))
q

= λq = 1
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Lemma 16. If the multiplier of a parabolic fixed point ẑ is a primitive q-th root of unity,
then the number n of attraction vectors for f ◦q at ẑ is a multiple of q; equivalently, the
multiplicity n+ 1 of ẑ as a fixed point of f ◦q is congruent to 1 modulo q.

Proof. Expand f and f ◦q around the fixed point up to order n + 1, which is per definition
the order of the first non-vanishing term of the expansion of f ◦q(z) − z. Thus f ◦q(z) =
z + azn+1 + . . . and f(z) = λz +

∑n+1
m=2 bmz

m + . . . . Up to order n+ 1 one has

f ◦ f ◦q = λz +
n∑

m=2

bmz
m + (bn+1 + a λ ) zn+1 + . . .

f ◦q ◦ f = λz +
n∑

m=2

bmz
m + (bn+1 + a λn+1 ) zn+1 + . . .

Since f ◦ f ◦q = f ◦q ◦ f the coefficients of these two expressions must agree at all orders, so
λ = λn+1 i.e. λn = 1. Since λ is a primitive q-th root of unity, n must be a multiple of q.

Finally, a couple of pictures.
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Figure 12:

Figure 13: Top: from [2, p. 40]. Bottom: from [6, p. 109]. Part of the Julia set for a
quadratic map f having a fixed point of multiplier λ = e2πi(3/7) at the origin, near the center
of the picture. In this case, the sevenfold iterate f ◦7 is a map of degree 128 with a fixed point
of multiplicity 7 + 1 = 8 at the origin. The seven immediate attracting basins are clearly
visible.
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